English 論文 (出版済み・出版予定)
  1. Mordell-Weil ranks of elliptic curves in the cyclotomic Z2-extension of the rationals
    Int. J. Number Theory 13-2 (2017), 429-438.
  2. Elliptic curves with large Tate-Shafarevich groups over a number field
    Math. Research Letters 16-3 (2009), 449-461.
    MR 2511625 / Zbl 1191.11018
  3. On the 2-adic Iwasawa invariants of ordinary elliptic curves
    Int. J. Number Theory 4-3 (2008), 403-422.
    MR 2424330 / Zbl 1190.11058
  4. Construction of elliptic curves with large Iwasawa λ-invariants and large Tate-Shafarevich groups
    manuscripta math. 122-3 (2007), 289-304.
    MR 2305419 / Zbl 1152.11045
  5. A note on the growth of Mordell-Weil ranks of elliptic curves in cyclotomic Zp-extensions
    Proc. Japan Acad. 79 Ser. A (2003), 101-104.
    MR 1980609 (2004c:11088) / Zbl 1186.11031
  6. Finite Λ-submodules of Selmer groups of abelian varieties over cyclotomic Zp-extensions
    J. Number Theory 99 (2003), 415-443.
    MR 1969183 (2004c:11098) / Zbl 1045.11042
  7. On finite Λ-submodules of Selmer groups of elliptic curves (八森祥隆氏と共同)
    Proc. Amer. Math. Soc. 128 (2000), 2539-2541.
    MR 1690989 (2000m:11046) / Zbl 1053.11049
  8. An analogue of Kida's formula for the Selmer groups of elliptic curves (八森祥隆氏と共同)
    J. Algebraic Geometry 8 (1999), 581-601.
    MR 1689359 (2000c:11086) / Zbl 1081.11508
  9. An analogue of Kida's formula for the p-adic L-functions of modular elliptic curves
    J. Number Theory 84 (2000), 80-92.
    MR 1782263 (2001g:11085) / Zbl 0970.11021
論文 (preprintなど) 学位論文

楕円曲線の岩澤理論における木田の公式について
修士論文, 東京大学, 1997.
Finite Λ-submodules of Selmer groups of abelian varieties over cyclotomic Zp-extensions
博士論文, 東京大学, 2000.


発表 (2010年度以降. それ以前も含めた記録や報告集原稿等はここ)
参加している(いた)セミナー (自分の発表一覧)
科研費 (研究代表者のもの, 直接経費のみ)
その他
ホームに戻る