On a system which allows us to
simulate smoothing operation on
knot projections using dynamic of

spring

Meiji University School of Interdisciplinary Mathematical Sciences
The Department of Frontier Media Sciences

Ahara Lab

Rikiishi Yumu(B3)
Ahara Kazushi




\

Abstract

Project of BeadsKnot
Composition of BeadsKnot
BeadsKnot’ s functions
Algorithms

Conclusion and reflections

Future plan



T

* This system is named ‘BeadsKnot'.

* In order to draw a planer figure of a complicated knot
by connecting some simple knots, we use simulation
of physics with spring force simulation and repulsion.

* [n this system, we can simulate smoothing operation
and connecting operation for knot projections




Project BeadsKnot

T

* We make a system which allows us to draw & edit knot
projections interactively.

* We want to make this system as its first stage to make a
system which allows us to simulate Reidemeister Moves
for knot projections.

* Our system has operations of smoothing / un-smoothing
and we believe that this will lead us to achieve the goal.



Composition of BeadsKnot

*Points

* [In BeadsKnot, a knot projection
consists of points connected
with lines.

* Every point except on crossings
has pointers of the next point
and the before point.

X A Y

A’ s next points : Y
A’ s before point : X



Composition of BeadsKnot

——

* We set a spring between each point of length a. (blue lines)

*Points

* We set a spring between before point and next point of
length b .(red lines)

* b=2a-¢€




Composition of BeadsKnot

Special points “Joint”

* We call a point on a
crossing ‘joint’ . |
spring

* A joint has 4 pointers to

the points nearby.

* We set additional springs
of length 2, among 4
points as in right figure.




Composition of BeadsKnot

* Repulsion acts between every two points of which the
knot projection consists.

* Spring force and repulsion form a scheme of the
simulation model.



Functions of BeadsKnot
_’

* By mouse dragging, we can draw a circled beads on
the display.

About input

* We can add a circle in any position.



Functions of BeadsKnot
——

* In case of mouse dragging.

About Creating a Joint

* —BeadsKnot replaces an intersection to a joint automatically.

* clicking two points, we can made a joint connecting two
points to each other.

H

connect -



Functions of BeadsKnot

R

Smoothing operation

* Choose a direction and click a joint.

N

><<
><<



Functions of BeadsKnot
_’

About adding [ deleting a point into / from a point
sequence

- RN - e o+ o

Add a point here

o o\r > e .

Delete this point



\

* Demonstration



Algorithm
——

* For each connected component, we prepare an array
list of points.

Basic info

* Operations

* Each sequence of points has an orientation to
determine ‘the next’ and ‘the before’.

* When we add a point in a row, the orientation is
preserved.



Algorithm

*Creating a joint

1. We delete clicked 2 points and
add a joint to Array of points

2. The next/before data of the
deleted points are lost, and we
check the consistency of the
next/before data.

If we connect two connected
components, we need to combine
two array list of points.

CV(
e



Algorithm
——

Where is a joint created?

* When we make a joint, neighbor 4 points of
a joint is the before and the next points of

the clicked 2 points.

* We make a quadrilateral by neighbor 4
points and we set a joint at the intersection
of the diagonal of the quadrilateral.



Algorithm
——_

Smoothing

Delete a joint which is clicked.

2. Add 2 points to the array list of points in order to fill
the break.
3. Determine the orientation around the 4 neighbors.



Algorithm

—

Arrange the direction of knots

In this figure, the orientation of the knot happens contradiction at the black points
So, we need to rearrange the orientations for each segment.



Algorithm

\

Rearrangement of the orientation Check “nyo' ,

1. After smoothing, we need to re—
arrange the orientation of the knot
projection.

2. We start at one of the two new
points which was at a joint, we follow
a path to the ‘next’ direction.

3. If we meet another joint or the other
new point in the way, we check the
‘next’ direction.

(2)

Check “before Point”

If if happens contradiction, we follow a
path the ‘before’ direction and re—
arrange the before/next.



Conclusion & reflection
_’

* Smoothing simulation works normally (probably),

* Sometimes we cannot operate smoothing smoothly.
We need more highly reliability.



Future plan(1)
\

* We cannot determine which up or down edge is.



Future plan(2)

—

* We need to adjust the number of points automatically for each
points of the knot projection.

[ X X©] joinPoint11

3points

5points

- f




Future plan(2)

—

* We need to adjust the number of points automatically for each
points of the knot projection.

[ JOXe) joinPoint11

5points




Future plan(3)

L

Shorter

Longer

In order to adjust the length of each part automatically,
we need to check ‘appropriateness’.
(We have no plan.)



Future plan(4)
-’

We want BeadsKnot to allowed us to do Reidemeister Move.

0 Q < >

Connect by a joint/
smoothing

) < > >©'<




Future plan(4)
-‘

We want BeadsKnot to allowed us to do Reidemeister Move.

(3)

smoothing
 —

We want to make these operations automatic...



