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Dynamical Systems

Time evolution of solution orbits for

T = f(il’)) f:R"™ — R" smooth

Ln+1 — f(xn) f . R" — R", diffeo.
General theory from differential equations ...

- Existence

- Uniqueness

. Continuous dependence on Initial points
w: R x R" — R", smooth s.t.

— tlow p(0,2) =z, p(t +s5,2) = ¢(t,¢(s, 7))



Key Task 1 : Asymptotic Behavior

Typical examples. top : (t,x)-plot, bottom : (Xx,y,z)-plot

ops « 0012000

e}

Equilibrium

Periodic orbit

Chaos



Key Task 2 : Stability

Typical examples. stability of equilibria

T =ax (a <0) T =ax (a>0) T =azx (a > 0)
y = by (b<0) y = by (b<0) y = by (b > 0)
Y /J |/
/71N " |

Sink Saddle Source

(stable) (unstable) (unstable)



Key Task 3 : Global Dynamics

Typical examples.

Heteroclinic Homoclinic
orbit orbit

Global orbits containing » Global bifurcation, Chaos
unstable equilibria

and more complex phenomena




Fast-slow system

= f(z,y,e€)

*6
) y=e€g(z,y,¢), 0<ex1

z € R": fast, y € R : slow, t € R : time

€ . multiple time-scale parameter

Ex. Traveling wave solutions of reaction-diffusion systems
ex. FitzHugh-Nagumo .
U ="mnv
e = Otge + f(1) =\ 5 (g () + A
A = e(u —yA) A=e0 " (u—N)

u(zx,t) — u(x — 0t)



Fast-slow system

Typical examples. top : (t,x)-plot, bottom : (Xx,y)-plot

............

! .

{Very fast ! |
T\

Very slow !}

Relaxation Mixed Mode
Oscillation Oscillation



Fast-slow system

A A
A A Fast dynamics

family of / near
T low manifolds
equilibria S

/
\

=0 g > 0 : Sufficiently Small

Singular Perturbation Method
- Analytic
. Geometric



Fast-slow system

family of
equilibria

/

=0 e >0 :Given

near “slow manifolds” ---

. Speed of trajectories is very slow !
-Need control of instability.

How do we calculate solutions of such systems
with mathematical rigor ?



Analytic Approach (typical)

“Reduce problems for solutions to
fixed point problems.”

Numerical Simulations

“Solve initial value problems or boundary
value problems directly.”



“See not objects themselves,
but their neighborhoods.”

Topological Approach

+ Rigorous Numerics



1. Slow Manifolds



Our desire :
trajectories near “invariant manifolds”

f

What is this ?




Slow manifold

= f(z,y,0)
7 =0

W*(So)

family of
equilibria

W*(So)

\
So C {f(z,9,0) = 0}

(invariant)




Slow manifold

E = € C (0,60]
ZU:f(CB,y,O) izf(x,y,e)
g =0 y=eg(x,y,¢)

W#(So)

-
\ - F
S {flag0)=0p S

(Invariant) (locally invariant)

W*(So)




Slow manifold

Geometric Singular Perturbation Theory
[Fenichel (1979), cf. Jones (1995)]

Persistence of (locally) invariant manifolds for all sufficiently
small € under normal hyperbolicity

\

Q. How large is this € ?

Q. Can we compute solutions for
extremely small € ?




Gap between mathematics and numerics

“Sufficiently small €” : unknown

0 l € 1071 0.001

Machi
Limitation
of Math.

Unavoidable Gap !



Rigorous Numerics

V2 = 1.41421356 : Not rigorous — cause small errors

V2 € [1.41421356, 1.41421357] : enclose errors — Rigorous !
U

“Interval Arithmetics” -

XxY={zxy|lzeX,yeY} (x=+—,X%,/) w
flU) =) |lzcU;CW

= X.
U c R": compact, convex st. = dz* € U s.t. f(z") = ™.
flu)cu

U represents x|

Enclose all numerical errors
— Mathematically rigorous numerical results !



Gap between mathematics and numerics

“Sufficiently small €”

0 € 10~10 \ 0.00]1
| | I | |

| | >

Machine epsilon

Math. + Rigorous Numerics

Explicit and Rigorous Coverage !



Slow manifold : topological approach

Geometric Singular Perturbation Theory
[Fenichel (1979), cf. Jones (1995)]

Persistence of (locally) invariant manifolds for all sufficiently
small € under normal hyperbolicity

» a = Aa + F} (CL, b, vy, 6) Spec(A) C {ReX > 0}, Spec(B) C {ReX < 0}

diagonalize b= Bb+ Fy(a, b, y, €)
y — Eg(a7 b? y? 6)

—>

Construct a fast-saddle-type block N x K

K c R : ¢pt., convex
N = Ny x Ny C R" : cpt., convex s.t.

f(x,y,€) - vgn, >0 on ONy X Ny x K x [0, ¢€p

flz,y,€) - vogn, <0 on Ny x ONy x K x |0, €]

19

Fy, Fy = o(|al, |b])

A

b

44
i

Nh_;

<EF

>

-» 3
'

<&F
4

14
No



Slow manifold : topological approach

A

Fast-saddle-type block : ﬁ*** f**ﬁ;

For all y In K, there Is a point on :: < :;

slow manifolds inside the block. ‘
M

>

Proof : Nontriviality of the topological mapping degree or

the homological Conley index (or No Retract Theorem)

Next task :

Dynamics inside blocks



Slow manifold : topological approach
a = Aa+ Fi(a,b,y,¢)

Thm [M. cf. Jones (1995) Theorem 4] b= Bb+ I3(a,b,y,¢)

In addition, define the following numbers : y = eg(a,b,y,¢)
OF OF : )> Jacobian

OF OF
i) = (G0@). ot ) = (e T G e

OF OF OF OF
B = (520)) ok Balo) = (G 26 GR0) |

5 'S maximal
i 00 = (26). o 6= (%) Lo L) singular values.
Also, assume the unstable cone condition

inf Spec(A) — (sup oy, +supoy,) >0,

inf Spec(A) + inf |Spec(B)| /
— {Sup Ox, T SUpoy,, +supop, +supop, + € (Sup 0, Tsupo, )} > 0

N x K :a tfast-saddle-type block

Then there is a smooth function a = h(b, y, €) such that
W=*(Se) = {(a,b,y) € N x K |a=h(b,y,€e)}, Ve € |0, o).

The similar result to W*(S.) also holds.

inNXKX[O 60].

A



Slow manifold : topological approach
Cone conditions -

The inequality makes a cone below.
(description of (un)stable manifolds : asymptotic behavior)

LV ‘v' *_)

WY(S,)

H

(S Ly

+4—14



Our desire :

“trajectories near saddle-type slow
manifolds”

Assumption :

Slow manifold is validated by fast-saddle-
type blocks.

(iteration of the previous procedure.)

Restriction: [ — 1

z = f(z,y,€)
y=ceg(z,y,¢), 0<e<1
x e R" : fast,yERl . slow, t € R : time



Our desire :

“trajectories near saddle-type slow
manifolds”

Solve solutions directly ?

NO I



ering-Exchange



Covering relations

Definition [h-sets, zgliczynski-Gidea (2002)]
An h-set consists of the following :

N C R™ : A compact set
u(N),s(N) € Z>g s.t. u(N)+s(N)=n

cy @ R? — R¥WY)  RS(V) 1 homeomorphism s.t.

cn(N) = Byvy X Bsw)- Ex : u(N)=1, s(N)=2
\

u(N) -dimensional ball centered at O, radius 1

N, := By(n) X By,
N; = 0By Ny X Bs(ny,
N} := Byn) X OBy,
N~ :=cy (N;), NT:=cy' (N).

C

Ex : u(N)=2, s(N)=1



Covering relations

Definition [Covering Relation, zgliczynski-Gidea (2002)] M

N, M : h-sets, f: N — RU™M - continuous.
Define /N :f> M as follows :

f(N)
1. There is a homotopy A : [0,1] x N, — R¥™ M sych that
ho = for  fer=eaofocyt EX. 2 U=l
A([0,1), No) N M = 0,
h([0,1], Ne) N M = 0,
2. Thereisalinear map A : RY — RY such that

hi(p,q) = (A(p),0),
A(0B,(0,1)) Cc R*\ B,(0,1)

Ex. :u=2



Covering relations

g
Theorem. [Zgliczynski-Gidea (2002), Wilczak (2006) etc.]

{ M. }7_, : asequence of h-sets, w(Mi) = u(Ms) = - -

fr: M — RAm Mi+1 . continuous . Assume that
Fro
My L o L B2y

Then

E|CE'€M1 S.T. in---Of1($)€iﬂtMi+1, 7/:]‘7

u(My)




Qur desire :
“trajectories near saddle-type slow

manifolds”

“sequence of covering relations
near saddle-type slow manifolds”

P LN VA N L=y A

Topological interpretation
of problems !



“sequence of covering relations
near saddle-type slow manifolds”

Directly compute covering relations ?
So ridiculous !

near “slow manifolds” ---

- Speed of trajectories is very slow !
-Need control of instability.



Slow shadowing

ba
222822
=[N & 1%=<
g [Joz"
"1 M1
yio 4
Y1 -
Yo
Y1

Dynamics around slow manifolds

a = Aa+ Fi(x,y,¢)
b = Bb+ F5(z,y,€)
y' =eg(z,y,e)

- i, Ny : Fast-saddle-type blocks w. cones
. U(Nl) ZU(NQ) —u = 1.
» dist(9(mqy Ni), maSe) > ag > 0,

dist(O(mp Nk ), mpSe) > by > 0, k=1, 2.
S, :slow manifoldin Ny U No

ap = diam(m,(Ny)), by = diam(my(N))
g(x,y,€) >0,

wy(Nk) = [y un ) vi <y (B=1,2),
va € (i ui syl € lya ).



Slow shadowing

)\k = X — Su
NkX[O,Go]

b

sup

TAw + oAy |
Ny X [0,60]

pr = O + sup oOps + Sup OBs | -
N].{;X[O,GO] NkX[O,G()]
ong A1) = (F0@). on: a3 = (G0 SR S,
on B = (5200, om B = (520 G20 6
..... 's maximal singular values
4 )
Definition.
We say a pair {N1, N2} of h-sets is a slow
shadowing pair if
1 a 1 b h
max{— log (—k> , — log (—k)} < —,
Ak ao,) Pk bo €k
kE=1,2.
\_ J




Slow shadowing

(" -y m
Proposition [siow shadowing, M., arXiv 1507.01462]

For a slow shadowing pair {Nl, NQ} , there are h-sets
My C (N)y=Nn{y=y}, M2C (Nao)yyp=NoN{y=9+h}

(N <g+h

. such that M, N Ms.

1 Q. 1 b1 h
max § — 10g — |, log T < -,
Ak ap ) |k bo €k

k=12



Slow shadowing
1 a 1 b i
max {— log (a—k) , — log (b—k) } < _ﬁy
Ak ao )  |pk bo €k
A

a(t) — an(t)] b(—t) — bar (—1)] .
. k 2 Eg(ZU, Y, E)
"N
“moving unstable cone” “moving stable cone” speed in

for each point for each point slow direction



Slow shadowing

Proposition [slow shadowing, M., arXiv 1507.01462]

For a slow shadowing pair {Nl, NQ} , there are h-sets

My C(N1)g=Nin{y=9}, My C (Na)gyp=NoN{y=9y+h}
(Nl)ﬁﬂ—l—ﬁ 1 A h
such that M, e — M. ’ng (I)’;)} <z
o
AAS 2
h

<
<

covering
relation !




Slow shadowing

maxs — log | — | , —— log [ — < —,
Ak ap ) | bo €L

k:LZT T

Eigenvalues Bound of
Block Size ~ SPeed

Very simple ) |
calculations T l _
i _. Covering relation

around slow manifolds !



Covering-Exchange

! Proposition [Covering-Exchange : drop, M.]
° o SOG(T7.)
For a slow shadowing pair { Ny, N2}, assume that N "=—" (N1) <.

for some h-set N. Then there (a]\ge)two h-sets M1 C (N1)y, M2 C (N2)y4n
LV<g+h
P ~Y

such that pe (L) e
. N —" M "— M.

! Proposition [Covering-Exchange : jump, M.]

For a slow shadowing pair { N1, No}, let NS¥ C NQf’_ be a fast-exit face of Vo
(subset of the boundary with red arrow in Fig.2) and assume

dist(N5*",{y = y}) > 2h. Then there are two h-sets M C (N1)y, Mz C (N2);5
(N1 <g+h pN2

Pe e j
such that M, - = M, = N2eX1t.




P2 Pm 1 .
.’:> M1:>M2:> = M,, :>N§,j<f1.

“Covering-Exchange”



EidrOpﬂ
max{iklog (Z‘;) 1k log (B’*)} < !

A

o (T, P P pm pm
( 7) el -
[ ] [ ]
€ exit
m m—+1-

“Coveri
vering-Exchange”



“Covering-Exchange”



“jumpﬂ
o (). e (2)) <

o (T,
NPT o Lo g LB e,
1:> 2; -Pml
M Per'n NeXit
m-+1-

“CO
vering-Exchange”



iﬁjumpﬂ

<

@(T) ' *
N My Lo g, Lo B

2 . M P

m-+1-

Covering-Exchange”




Validation theorem [M.]

] . Assume the existence of

e(Tpa) ()()POO ()1PO1 PO 0~ 0,m
» 1100
@ M = M — M,

PRI g pe(Ty,0) LN PO Pl
= FOTY 0 — M, =

a loop of Covering-Exchange sequence , Ve € |0, ¢g].
— the existence of periodic orbits | ve ¢ (0, €o].

2. Assume the existence of

Tlob ( 0’) POl PO mqo—1

{B(SE,U) 9%(;) B(Se,u)}k uGFO v MOO:>M01:>"' — MOmO
P pred) o B P pppams

Covering-Exchange sequence with additional cov. rel., Ve € [0, ¢p].
— the existence of heteroclinic orbits Ve € (0, ¢].



3. Validation Examples



Example : FitzHugh-Nagumo equation
U = v
v =0 cv — f(u) +w) flu) =u(u—a)(l —u) (FN)

W = ec™ 1 (u — yw)

Computation Procedures :

1. Slow manifolds via fast-saddle-type blocks and cones
(Error estimates and bounds of eigenvalues)

2. Slow shadowing and Covering-Exchange : jump
(Error estimates and bounds of eigenvalues)

3. Covering-Exchange : drop V m-cones

(Solving ODEs in the fast time scale) _ _ L.
- invariant foliations

Computation Library : _+block on slow mfds |

CAPD ( http://capd.ii.uj.edu.pl ) : C++ library ver. 3.0
CPU : 1.6GHz Intel Core i5 (Macbook Air 2011), Memory : 4GB 1333 MHz DDR3



Example : FitzHugh-Nagumo equation

U ="

v =0 cv — f(u) +w) fu) =u(u—a)(l—u)
W = ec™ (u— yw) a=0.01, y=0, § =5.0

i Computer Assisted Result 1 [M. arxiv 1507.01462]
For all ¢ € [0.495,0.505] and € € (0,1.0 x 10~°] , there exists
a periodic orbit for (FN).

\
Validated trajectories : (u,v)-plane
Trajectories from the point near (u,v) ~ (—0.179,0)

Validation of _'
Covering-Exchange : drop : - - |

w € [0.03711,0.04127] w € [0.03711,0.03712] w € [0.04126,0.04127]

Trajectories from the point near (u,v) ~ (0.852,0)

w € [0.10432,0.10866] w € [0.10432,0.10433] w € |0.10865, 0.10866]




Example : FitzHugh-Nagumo equation

A
A

U ="

N\

W = ec™ 1 (u — yw) a=02v=79 6 =5.0

0=0"Yev— flu)+w) J(u)=u(u—a)l—u) \* <<—/

=%

\_

i Computer Assisted Result 2 [M. arxiv 1507.01462]

For all ¢ €[0.947,0.948] and € € (0,2.5 x 10~°] , there exists
a homoclinic orbit of the origin for (FN).

Validated trajectories : (u,v)-plane

Trajectories from the origin

Validation of
Covering-Exchange : drop

/

/

w € [—0.001354,0.001578] w ~ —0.001345

Trajectories from the point near (u,v)

w ~ 0.001569
~ (0.799,0)

VA

w € [0.0944,0.09728] w ~ (0.0944 w ~ 0.09728



Conclusion

“See not objects themselves,
but their neighborhoods.”
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