
On	a	system	which	allows	us	to	
simulate	smoothing	operation	on	
knot	projections	using	dynamic	of	

spring�
Meiji	University	School	of	Interdisciplinary		Mathematical	Sciences	

The	Department	of	Frontier	Media	Sciences			
	

Ahara	Lab	
	

Rikiishi	Yumu(B3)	
Ahara	Kazushi	



*  Abstract	

*  Project of BeadsKnot	

*  Composition of BeadsKnot	

*  BeadsKnot’s functions	

*  Algorithms	

*  Conclusion and reflections	

*  Future plan	

Index	 �



*  This system is named ‘BeadsKnot’.	

*  In order to draw a planer figure of a complicated knot 
by connecting some simple knots, we use simulation 
of physics with spring force simulation and repulsion. 	

	

*  In this system, we can simulate smoothing operation 
and connecting operation for knot projections	

Abstract �

connect�



*  We	make	a	system	which	allows	us	to	draw	&	edit	knot	
projections	interactively.	

*  We	want	to	make	this	system	as	its	first	stage	to	make	a	
system	which	allows	us	to	simulate	Reidemeister	Moves	
for	knot	projections.	

*  Our	system	has	operations		of	smoothing	/	un-smoothing	
and	we	believe	that	this	will	lead	us	to	achieve	the	goal.	

Project	BeadsKnot�



*  In BeadsKnot, a knot projection  
consists of points connected 
with lines.	

*  Every point except on crossings 
has pointers of the next point 
and the before point.	

Composition	of	BeadsKnot�

・Points�

A �X � Y �

A’s next points : Y	
A’s before point : X	



*  We set a spring between each point of length   . (blue lines)	

*  We set a spring between before point and next point of 
length    .(red lines)	

*   	

Composition	of	BeadsKnot�

・Points�

a

b
b = 2a−ε



*  We call a point on a 
crossing ‘joint’.	

*  A joint has 4 pointers to 
the points nearby.	

*  We set additional springs 
of length      among 4 
points as in right figure.	

Composition	of	BeadsKnot�

Special	points	“Joint”	�

Joint �

spring�

2a



*  Repulsion acts between every two points of which the 
knot projection consists.	

*  Spring force and repulsion form a scheme of the 
simulation model.	

Composition	of	BeadsKnot�

Other…… �



*  By mouse dragging, we can draw a circled beads on 
the display.	

*  We can add a circle in any position.	

Functions	of	BeadsKnot�

About	input �



*  In case of mouse dragging.	

*  →BeadsKnot replaces an intersection to a joint automatically.	

*  clicking two points, we can made a joint connecting two 
points to each other.	

Functions	of	BeadsKnot�

About	Creating	a	Joint �

connect	 connect	



*  Choose	a	direction	and	click	a	joint.�

Functions	of	BeadsKnot�

Smoothing	operation �



About	adding	/	deleting	a	point	into	/	from	a	point	
sequence	 �

Functions	of	BeadsKnot�

Add	a	point	here �

Delete	this	point�



*  Demonstration	 �



*  For each connected component, we prepare an array 
list of points.	

*  Operations	

*  Each sequence of points has an orientation to 
determine ‘the next’ and ‘the before’.	

*  When we add a point in a row, the orientation is 
preserved.	

Algorithm�

Basic	info�



1.  We delete clicked 2 points and 
add a joint to Array of points	

2.  The next/before data of the 
deleted points are lost, and we 
check the consistency of the 
next/before data.	

If we connect two connected 
components, we need to combine 
two array list of points.	

Algorithm�

・Creating	a	joint �



*  When	we	make	a	joint,	neighbor	4	points	of	
a	joint	is	the	before	and	the	next	points	of	
the	clicked	2	points.	

*  We	make	a	quadrilateral		by	neighbor	4	
points	and	we	set	a	joint	at	the	intersection	
of	the	diagonal	of	the	quadrilateral.	

Algorithm�

Where	is	a	joint	created?		�



1.  Delete a joint which is clicked.	

2.  Add 2 points to the array list of points in order to fill 
the break.	

3.  Determine the orientation around the 4 neighbors.	

Algorithm�

Smoothing�



Algorithm�

Arrange	the	direction	of	knots	

In this figure, the orientation of the knot happens contradiction at the black points	
So, we need to rearrange the orientations for each segment.	



Algorithm�

Rearrangement	of	the	orientation	
Start	
Check	“next	Point” �

1.  After smoothing, we need to re-
arrange the orientation of the knot 
projection.	

2.  We start at one of the two new 
points which was at a joint, we follow 
a path to the ‘next’ direction.	

3.  If we meet another joint or the other 
new point in the way, we  check the 
‘next’ direction. 	

If if happens contradiction, we follow a 
path the ‘before’ direction and re-
arrange the before/next.	

(2) �
Check	“before	Point” �



*  Smoothing simulation works normally (probably),	

	

*  Sometimes we cannot operate smoothing smoothly.	
We need more highly reliability.	

	

Conclusion	&	reflection�



*  We cannot determine which up or down edge is.	

Future	plan(1) �



*  We need to adjust the number of points automatically for each 
points of the knot projection.	

Future	plan(2) �

5points �
5points �

3points�



Future	plan(2) �

5points �
5points �

5points �

*  We need to adjust the number of points automatically for each 
points of the knot projection.	



Future	plan(3) �

In	order	to	adjust	the	length	of	each	part	automatically,	
we	need	to	check	‘appropriateness’.	
(We	have	no	plan.)�

Shorter �

Longer	



Future	plan(4) �

We	want	BeadsKnot	to	allowed	us	to	do	Reidemeister	Move.	

Connect	by	a	joint/	
smoothing�

(1) �

(2) �



Future	plan(4) �

(3) �

smoothing� joint	�

We	want	to	make	these	operations	automatic…			�

We	want	BeadsKnot	to	allowed	us	to	do	Reidemeister	Move.	

remove �


