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Quasiconformal mappings in the plane
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Conformal mappings

Let C be the complex plane and D the unit disk.

Recall:

Theorem (Riemann mapping theorem)

Let D & C be a simply connected domain with z0 ∈ D. Then there is a

unique conformal map f : D → D with f(z0) = 0 and f ′(z0) > 0.

Conformal mappings preserves local angles.
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Conformal mappings maps infinitesimal circles to infinitesimal

circles.

f(z)− f(a) = f ′(a)(z − a) +O((z − a)2) in a neighborhood of

a ∈ D.
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Quasiconformal mapping

Definition

Let K > 1 and D,D′ be the domains in the complex plane C. An
orientation-preserving homeomorphism f : D → D′ is a

K-quasiconformal mapping if f satisfies the following:

1 For any closed rectangle R := {z = x+ iy | a ≤ x ≤ b, c ≤ y ≤ d}
in D, f is absolutely continuous on almost every horizontal and

vertical line in R.

2 The dilatation condition

|fz(z)| ≤
K − 1

K + 1
|fz(z)| (1)

holds almost everywhere in D, where

fz = (fx − ify)/2, fz = (fx + ify)/2 and z = x+ iy.
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It follows from the definition that the quasiconformal mapping

f : D → D′ has partial derivatives fz, fz almost everywhere in D.

Further f is differentiable a.e. in D, i.e. the real-linear approximation

f(z)− f(z0) = fz(z0)(z − z0) + fz(z0)(z − z0) + o(|z − z0|)

holds a.e. in z0 ∈ D.

Figure. Quasiconformal mapping
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The Beltrami coefficient can be defined as

µ(z) :=
fz(z)

fz(z)
(2)

a.e. in D for a qausiconformal mapping f , which is a measure of

non-conformality.

If µf (z0) = 0 at z0 ∈ D, f is conformal at z0.
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Proposition (Composition with conformal mapping)

Let D1, D2 be domains, and µ ∈ L∞(D1)1. Assume that f1 : D1 → D2

is a µ-conformal mapping and h : D2 → D3 a conformal mapping.

Then f2 = h ◦ f1 is µ-conformal.

Remark If we have self µ-conformal mappings of D, then we can obtain

µ-conformal mapping from D to arbitrary simply connected domains.

Further many efficient methods for the numerical conformal mappings

are known.
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Set L∞(D)1 := {µ : D → C | µ is measurable on D with ∥µ∥∞ < 1}.

Theorem (Measurable Riemann mapping theorem)

Let µ ∈ L∞(C)1. Then there exists a quasiconformal mappings

f : C → C whose Beltrami coefficient coincides with µ almost

everywhere in C. This mapping is uniquely determined up to a

conformal mapping of C onto itself.

Corollary

Let D,D′ be bounded simply connected domains in C and

µ ∈ L∞(D)1. Then there exists a quasiconformal mapping f : D → D′

whose Beltrami coefficient coincides with µ almost everywhere in D.

This mapping is uniquely determined up to a conformal mapping of D′

onto it self.

We say a quasiconformal mapping of D is µ-comformal

(µ ∈ L∞(D)1) if its Beltrami coefficients coincide with µ almost

everywhere in D.

f is a homeomorphism from D to D′ which satisfies the Beltrami

equation fz = µfz on a.e. D.
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The following lemma is useful for our setting.

Lemma (Good approximation lemma)

Let {µn ∈ L∞(C)1}n∈N and satisfies ∥µn∥∞ ≤ k < 1 for all n ∈ N, and
such that the pointwise limit µ(z) := limn→∞ µn(z) exists almost

everywhere. Let fn : C → C be the µn-conformal mappings which fix

0, 1,∞. Then fn(z) converges to f(z) uniformly, where f is the

µ-conformal mapping which fix 0, 1,∞.

Basically this lemma states that: if the Beltarami coefficient of a

quasiconformal mapping g approximate µ, then g approximate

µ-conformal mapping.
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Applications and known methods

Applications of quasiconformal mappings:

Complex dynamics

Gaidashev, D., and Yampolsky, M. (2007). Cylinder renormalization of
Siegel disks. Experimental Mathematics, 16(2), 215-226.

Medical image processing

Lui, L. M., Wong, T. W., Zeng, W., Gu, X., Thompson, P. M., Chan, T.
F., and Yau, S. T. (2012). Optimization of surface registrations using
beltrami holomorphic flow. J. Scientific Computing, 50(3), 557-585.

etc.
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Setting
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Quasiconformal self-mapping of the unit disk

Corollary

Let D be the unit disk and µ ∈ L∞(D)1. Then there exists unique

µ-conformal mapping f : D → D with f(0) = f(1)− 1 = 0.

For given µ ∈ L∞(D)1, we will construct an approximant of

µ-conformal self-mapping of D with f(0) = f(1)− 1 = 0.
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Triangulation of the unit disk in our setting

Figure. An triangulation of D which consists of 4096 2-simplices.

Definition (Triangulation of the unit disk)

We say a Euclidian simplicial complex T which consist of finite closed

2-simplices {τi} in C form a triangulation of D if:

1 P := |T | is a closed simple jordan polygon whose vertices lies on

the boundary of the unit disk ∂D where |T | is the union of all

2-simplices in T ,

2 each 1-face lk of any 2-simplex τi of T is either:

an edge of P , or
there exists unique j(j ̸= i) such that lk is an edge of a 2-simplex
τj in T .
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Observation

Figure: (Left) A triangulation Tz of the unit disk, (Right) A triangulation Tw
of D which is simplicially equivalent to Tz .

Let Tz, Tw be triangulations of D.
If Tz and Tw are simplicially equivalent, then the piecewise linear

mapping f : |Tz| → |Tw| which sent 2-simplex in Tz to the

corresponding 2-simplex in Tw linearly, is a homeomorphism

between |Tz| and |Tw|.
We say f is induced piecewise linear mapping by Tz and Tw.

16 / 60



Algorithm for

quasiconformal

mappings

H. Shimauchi

Quasiconformal

mappings

Setting

Algorithm

Numerical experiments

Convergence

Modified Algorithm

Conclusion

Figure: (Left) A triangulation Tz of the unit disk, (Right) a triangulation Tw
of D which is simplicially equivalent to Tz .

The Beltrami coefficients µf of f : |Tz| → |Tw| is defined on each

interior of 2-simplex.

Actually µf satisfies maxτ∈Tz |µf |τ − 0.3i| < 0.012.

f can be viewed as an approcimant of µ-conforaml mapping where

µ(z) = 0.3 i.
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Formulation of our problem

Definition

For given triangulation of the unit disk Tz, we say f : |Tz| → C is in

PL(Tz) if f is continuous on |Tz|, and is linear on each 2-simplex in

|Tz|.

We aim an algorithm as the following.

Input:

µ ∈ L∞(D)1.
A triangulations of the unit disk Tz whose vertices include 0 and 1.

Output:

A triangulations of the unit disk Tw ∼= Tz whose vertices include 0

and 1 in suitable position, so that the Beltrami coefficient µg of

the induced piecewise linear mapping g : |Tz| → |Tw| ∈ PL(Tz),

reduce ∥µ− µg∥∞ on each τ ∈ Tz.
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Algorithm
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Logarithmic cordinates

Let µ ∈ L∞(D)1.
Set µ(z) := z2

z2
µ( 1

z
) for z ∈ C \ D.

Theorem (Recall: Measurable Riemann mapping theorem)

For given µ ∈ L∞(C)1, there exists unique µ-mappings f : C → C
which fix 0, 1,∞.

We want to note that:

Corollary

If µ ∈ L∞(C)1 and µ(z) = µ(1/z)z2/z2, then the restriction of

µ-conformal mapping fµ : C → C which fix 0 and 1 to the unit disk, is

a self µ|D-conformal mapping of D which fix 0 and 1.

Actually f |D is desired quasiconformal mapping where f : C → C is

µ-conformal mapping.
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Take the logarithmic coordinates Z = log z. Then

F (Z) := log f(eZ) have the symmetry with respect to the

imaginary axis.

First we approximate F (Z) := log fµ(eZ) on a finite rectangle.
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Take M,N ∈ N. We define (M + 1)N vertices

Zj,k =

√
3π j

N
+

2π(k + (j mod 2)/2)

N
i (3)

for −M ≤ j ≤ 0 and 0 ≤ k ≤ N − 1. Our mesh contains M ×N

rightward pointing 2-simplexes defined by

τ+j,k =

{
Conv(Zj−1,k−1, Zj−1,k, Zj,k), j even,

Conv(Zj−1,k, Zj−1,k+1, Zj,k), j odd,
(4)

for −M + 1 ≤ j ≤ 0 where Conv(Z1, Z2, Z3) is the 2-simplex which

vertices are Z1, Z2, Z3. There are also M ×N leftward pointing

2-simplexes

τ−j,k =

{
Conv(Zj+1,k−1, Zj+1,k, Zj,k), j even,

Conv(Zj+1,k, Zj+1,k+1, Zj,k), j odd,
(5)

for −M ≤ j ≤ −1.
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1

2

3

4

5

6

In the case the triangles τ±jk are equilateral. We extend this mesh

symmetrically to the right half-plane as

Zj,k = ϱ(Z−j,k)

where ϱ is the reflection of the imaginary axis

ϱ(Z) = −Z. (6)

Now we have (2M + 1)N vertices and 4MN 2-simplexes. We say this

the basic mesh in the logarithmic coordinates.
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Observation: linear quasiconformal mapping

Proposition

Let z1, z2, w1, w2 ∈ C with z1 ̸= z2 and w1 ̸= w2. For given complex

constant µ ∈ D, there is a unique µ-conformal affine linear mapping

B(z) = B[µ; z1, z2; w1, w2](z) which sends zi to wi (i = 1, 2).

24 / 60



Algorithm for

quasiconformal

mappings

H. Shimauchi

Quasiconformal

mappings

Setting

Algorithm

Numerical experiments

Convergence

Modified Algorithm

Conclusion

Let µ, a, b be complex constants with a ̸= 0, |µ| < 1. We consider the

µ-conformal real-linear mapping

Lµ(z) :=
z + µz

1 + µ
. (7)

Proposition

B(z) is given by

B(z) = w1 +
w2 − w1

Lµ(z2 − z1)
Lµ(z − z1)

=
Lµ(z2 − z)

Lµ(z2 − z1)
w1 +

Lµ(z1 − z)

Lµ(z1 − z2)
w2.

Remark We note that the coefficients of w1, w2 in the last expression

are never 0, 1, or ∞ if z1, z2, z3 are distinct.

Corollary

Let µ-conformal affine linear map takes z1, z2, z3 to w1, w2, w3

respectively. Then the following holds:

Lµ(z2 − z3)w1 + Lµ(z3 − z1)w2 + Lµ(z1 − z2)w3 = 0. (8)
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Corollary

Let zi ∈ C (i = 1, 2, 3) noncollinear and wi ∈ C (i = 1, 2, 3)

noncollinear. There is a unique affine linear mapping which sends zi to

wi (i = 1, 2, 3). Further its Beltrami coefficient is equal to

µ = − (z2 − z1)(w3 − w1)− (z3 − z1)(w2 − w1)

(z2 − z1)(w3 − w1)− (z3 − z1)(w2 − w1)
. (9)
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Beltrami coefficient of F

The Beltrami coefficients ν(Z) of F (Z) are given as follows by the

chain rule for quasiconformal mappings :

ν(Z) = µ(eZ)
eZ

eZ
= µ(eZ)e−2i Im Z ,Re Z < 0. (10)

Using ν, we set the Beltrami coefficients as ν(Z) = ν(ϱ(Z)) for

Re Z > 0.

We will write ν±j,k for the average value of ν(Z) on the 2-simplexes τ±j,k.

It is useful for numerical work to take the average of ν(Z) over the

three vertices as an approximation of this average, at least when ν is

continuous. Let us note that

νjk = ν−j,k, j > 0. (11)
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Triangle equations

For all rightward pointing 2-simplicies τ+jk ∈ TM,N := {τ±j,k}, we
construct following MN linear equations:

a+jkWjk + b+jkWj−1,k + c+jkWj−1,k+1 = 0 (12)

where

a+jk =

{
Lνjk (Zj−1,k−1 − Zj−1,k), j even,

Lνjk (Zj−1,k − Zj−1,k+1), j odd,

b+jk =

{
Lνjk (Zj−1,k − Zj,k), j even,

Lνjk (Zj−1,k+1 − Zjk), j odd,
(13)

c+jk =

{
Lνjk (Zj,k − Zj−1,k−1), j even,

Lνjk (Zjk − Zj−1,k), j odd.
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Further MN linear equations for the leftward pointing 2-simplexes τ−jk
are constructed Corollary 4,

a−jkWjk + b−jkWj+1,k−1 + c−jkWj+1,k = 0 (14)

where

a−jk =

{
Lνjk (Zj+1,k−1 − Zj+1,k), j even,

Lνjk (Zj+1,k − Zj+1,k+1), j odd,

b−jk =

{
Lνjk (Zj+1,k − Zj,k), j even,

Lνjk (Zj+1,k+1 − Zj,k), j odd,
(15)

c−jk =

{
Lνjk (Zj,k − Zj+1,k−1). j even,

Lνjk (Zj,k − Zj+1,k), j odd.

Remark We have totally 4MN triangle equations.
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Boundary equations

Originally, the image of the infinitesimal circle by a quasiconformal

mapping, is infinitesimal ellipse. The shape of this ellipse is depend on

the Beltrami coefficients. Under this situation, we will add the following

equations.
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Let dk be the images of these points under the real-linear mapping Lµ0 ,

i.e.

dk = Lµ0(e
Z−M,k ) = r−MLµ0(e

2πik/N ), 0 ≤ k ≤ N − 1,

where µ0 denotes the average value of µ(z) inside this circle. These

vertices lie on an ellipse. We want a condition that the image of C is

unknown complex nonzero constant multiple of the ellipse {dk}. Hence
the boundary equations which achieve above condition are the following

2(N − 1) equations

W−M,k −W−M,k−1 = Dk,

WM,k −WM,k−1 = Dk, (16)

where Dk = log Cdk − log Cdk−1 = log dk − log dk−1 and

1 ≤ k ≤ N − 1. The magnitude of r−M does not influence the value of

Dk.
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Nomalization

Finally, for normalization of the solution we add one more equation,

W0,0 = 0, (17)

which is self-symmetric. This says that F (0) = 0, or equivalently,

f(1) = 1.
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Associated linear system

In argument above, we construct ne = 4MN + 2(N − 1) + 1 complex

linear equations for the nv = (2M + 1)N unknown variables Wjk,

−M ≤ j ≤M , 0 ≤ k ≤ N − 1. Let p = p(j, k) be an fixed bijection

from the set of index pairs {(j, k)} to the range 1 ≤ p ≤ nv. Using this

bijection p, we will rename the variables in a single vector W with

W := {Wp} = {Wj,k} (18)

for the convenience. The linear system now takes the form:

AW = B (19)

where A = (Aj,k) is the ne × nv-type complex matrix and B = (Bk) is

a complex vector of length ne. When we take a pair of N,M , the mesh

{Zjk} is fixed, and linear system above is defined. We will say that this

linear system (A,B) is the associated linear system to the collection of

ν-values {νjk}. The coefficients depend both on νjk and Zjk.
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Since our linear system is over determined, we chose the standard least

squares method for the approximation.

Definition (Least squares)

Let m,n ∈ N with m > n. Let AW = B an overdetermined linear

system where A ∈ Mm,n(C), B ∈ Cm and unknown vector W ∈ Cn.
We call W is the least squares solution of (A,B) if W minimize the

residual vector ∥AW −B∥2.
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Lemma

The least squares solution W = {Wj,k} (−M ≤ j ≤M ,

0 ≤ k ≤ N − 1) of the associated linear system (A,B) exists uniquely.

Furthermore W satisfies the following symmetric relation:

A
↔
W = Aϱ(W ) where

↔
W j,k =W−j,k, ϱ(W ) = {ϱ(Wj,k)} and ρ is

defined by s(6), i.e. the entries of W satisfy the symmetry

W−j,k = ρ(Wj,k). In particular, the values {W0,k} are purely imaginary.
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Figure. An exmaple of A (M = 64, N = 32, µ(z) = 0.3).
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Figure. tA ·A (M = 64, N = 32, µ(z) = 0.3).
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↓ eZ

Finally, we apply the exponential mapping to the vertices of {Zj,k} and

{Wj,k}, and then we take the piecewise linear mapping which is induced

by the corresponding between the two simplices.
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The algorithm is summarized as follows.

Algorithm

Input: The Beltrami coefficient µ ∈ L∞(D)1 and the dimensions M,N

for a simplicial complex {Zj,k} in the Z-plane.

1 Calculate the averages of the Beltrami coefficients νj,k on each

triangle in the logarithmic coodrinates.

2 Calculate the coefficients of the associated linear system (A,B) of

{νjk} and TM,N as prescribed .

3 Calculate the least squares solution W to the associated linear

system (A,B), and arrange the entries of W to form the mesh

{Wjk}.
4 4. Calculate wjk = expWjk for −M ≤ j ≤ 0 and 0 ≤ k ≤ N − 1.

Output: The piecewise linear mapping such that zjk 7→ wjk where

zjk = expZjk.
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Numerical experiments
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Constant Beltrami coefficients

The image of the circle |z| = 1 under the mapping Lµ is an ellipse with

semiaxes 1, (1− |µ|)/(1 + |µ|) slanted in the directions (1/2) arg µ,

(1/2)(argµ+ π) respectively. This ellipse is sent by the conformal

linear mapping H1/(2
√
µ),0 to the ellipse with semiaxes a, b. Then the

ellipse is transformed conformally to the unit disk, by an explicit formula

for the conformal mapping to D from this ellipse.
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The algorithm was applied for the constant Beltrami derivatives

µ = 0.1, 0.3, 0.5, 0.7, and meshes defined by N = 16, 32, 48, 64, 72,

84, with M equal to the least multiple of 4 no less than N logN/(π
√
3).

(M,N) (12,16) (24,32) (36,48) (52,64) (60,72) (72,84)

µ =0.1 0.012 0.0031 0.0014 0.0008 0.0006 0.0004

µ =0.3 0.0274 0.007 0.0031 0.0018 0.0014 0.001

µ =0.5 0.0615 0.0205 0.0109 0.0065 0.0051 0.0038

µ =0.7 0.2439 0.1201 0.0856 0.0627 0.053 0.0412

Table: The maximum of the absolute errors between the solutions and the real
values of some constant Beltrami derivative and M ≈ N logN/(π

√
3).

In the last case there are 24359 equations in 14196 variables. It took 4

seconds to solve the full set of equations.
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0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.015

0.020

0.025

N = 16

N = 32

N = 48

Figure: Numerical errors of algorithm for different values of (M,N) with
µ = 0.3.

The horizontal axis indicates the distance rj = |zjk| of the z-points
from the origin; the vertical axis gives the maximum discrepancy (over

k) of the calculated value of wjk from the true value.
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Radial quasiconformal mappings

Let φ : [0, 1] → [0, 1] be an increasing diffeomorphism of the unit

interval. Then the radially symmetric function

f(z) = φ(|z|)ei arg z = φ(|z|) z|z| (20)

has Beltrami derivative equal to

µ(z) =
|z|φ′(z)/φ(z)− 1

|z|φ′(z)/φ(z) + 1

z

z
(21)

when z ̸= 0. As an illustration we will take

φ(r) = (1− cos 3r)/(1− cos 3).

The resulting Beltrami derivative satisfies ∥µ∥∞ = 0.65 approximately.
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0.2 0.4 0.6 0.8 1.0
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1.0

Figure. φ and Tw

(M,N) (12, 16) (24, 32) (36, 48) (52, 64) (60, 72) (72, 84)

Error 0.0398 0.0135 0.0058 0.0034 0.0027 0.0020

Table. The domain points zjk on the real axis were selected, and the

values of wjk produced by the algorithm were compared with with the

true values φ(|zjk|).
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Sectrial quasiconformal mappings

In a similar spirit, we let ψ : [0, 2π] → [0, 2π] be an increasing

diffeomorphism. Write ψ̃(eiθ) = eiψ(θ). Then the sectorially symmetric

function

f(z) = |z| ψ̃
(
z

|z|

)
(22)

has Beltrami derivative equal to

µ(z) =
1− ψ′(θ)

1 + ψ′(θ)

z

z
(23)

when z ̸= 0. As an example we will take

ψ(θ) =

{
θ
2
, 0 ≤ θ ≤ π,

π
2
+ 3(θ−π)

2
, π ≤ θ ≤ 2π.
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Figure. ψ(θ) and Tw

(M,N) (12, 16) (24, 32) (36, 48) (52, 64) (60, 72) (72, 84)

Error 0.0712 0.0362 0.0251 0.0193 0.0173 0.0150

Table. The arguments of the final boundary values on the unit circle

were compared with the true values ψ(θ).
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Large dilatation and oscilation

Figure. µ(z) = 0.9 sin(20|z|).
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Trivial Beltrami coefficient

Let µ ∈ L∞(D) with ∥µ∥∞ < 1. If the corresponding normalized

solution fµ satisfies fµ(z) = z on the unit circle, µ called a trivial

Beltrami coefficient. Trivial Beltrami coefficients play an important role

in the theory of Teichmüller space. T. Sugawa showed a criterion for

the triviality of the Beltrami coefficients, and gave an example for a

trivial Beltrami coefficient. Let N be a non-negative integer and aj(t)

(1 ≤ j ≤ N) be essentially bounded measurable functions in t ≥ 0 so

that

µ(z) :=

N∑
j=0

aj (− log |z|)
(
z

|z|

)j+2

satisfies ∥µ∥∞ < 1. Then his results implies that µ is a trivial Beltrami

coefficient. For the experiment, we chose

aj(z) :=
2

3

(
sin 10z

2

)j+1

.
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Figure: The result made by our algorithm with trivial coefficient µ1.

Figure: The errors of the boundary values (left), the difference between the
induced Beltrami coefficients to µ1 (right).
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Convergence
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Theorem (Porter, S ,2014)

Let s ∈ N and Ms, Ns ∈ N be strictly increasing sequences which satisfy

c1Ns logNs ≤Ms ≤ c2Ns logNs (24)

for constants c1, c2 where c1 > 1/(π
√
3). If µ ∈ L∞(D)1 ∪ C1(D), then

the following holds.

i. If s is large enough, the points {z(s)j,k} and the points {w(s)
j,k}

produced by the algorithm form the vertex sets of triangulations

T
(s)
z and T

(s)
w of the unit disk D. Furthermore, for any fixed

compact set K ⊂ int D, K ⊂ |T (s)
z | and K ⊂ |T (s)

w | hold when s is

large enough.

ii. The mappings f (s) converge to the µ-conformal mapping f

normalized by f(0) = f(1)− 1 = 0 uniformly on compact subsets

of D as s→ ∞.
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Input:

µ ∈ C1(D) ∩ L∞(D)1.
Ms, Ns → ∞ as s→ ∞ with c1Ns logNs ≤Ms ≤ c2Ns logNs.

Output:

{g(s) ∈ PL(T
(s)
z )} s.t. g(s) → fµ as s→ ∞.

Remark We conjecture that the condition µ ∈ C1 is overly restrictive by

the numerical experiments.
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Key point of the proof

Calculations show that:

∥AsW s −Bs∥2 → 0.

We obtain Fs is a local homeomorphism and the image of the

boundary form a Jordan polygon.

Using the good approximation lemma and the following lemma, we

obtain the convergence.

Lemma

Let Tz := {τj} be a triangulation of the unit disk D with Pz := |Tz| is a
simple jordan polygon of k sides. Suppose f : |Tz| → D ∈ PL(Tz)

preserve the orientation on each τ ∈ Tz and maps ∂|Tz| to a boundary

of a simple polygon Pw with k sides on the unit circle

homeomorphically. Then the secant map induced by f and Tz, is a

orientation preserving homeomorphism from |Tz| to P .
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Modified algorithm
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Theorem (Principal Solution)

Let µ : C → C be a measurable function with compact support and

∥µ∥∞ < 1. Set µ(z) = 0 on the outside of its support. Then there

exists unique µ-conformal mapping f : C → C of the plane which

satisfies f(0) = 0 and f(z) = z +O(1/z) as z → ∞.

We modify our algorithm for the principal solution to the Beltrami

equation with compactly supported µ.
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Let Xm = {z ∈ C : −m < Re z < m,−m < Im z < m} be a square.

Xm subdivide into (2n)2-squares (same size, edge length = m/n).

Figure: Approximation of Principal solution

We use the triangle equation with the condition f(z) ≈ z as z → ∞
and normalization f(0) = 0.
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Conclusion

We propose an algorithm for numerical quasiconformal mappings.

The approximant converge to the true solution at least in the case

where the Beltrami coefficients are in C1.

For the details:

Porter, R. Michael, and Hirokazu Shimauchi. Numerical solution of

the Beltrami equation via a purely linear system, submitted.
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Thak you very much for your attention !
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