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Quasiconformal mappings in the plane
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Conformal mappings
Let C be the complex plane and D the unit disk.
Recall:
Theorem (Riemann mapping theorem)
Let D & C be a simply connected domain with zo € D. Then there is a
unique conformal map f : D — D with f(20) =0 and f'(z0) > 0.

o Conformal mappings preserves local angles.
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@ Conformal mappings maps infinitesimal circles to infinitesimal

circles.

f(z) = f(a)
a€D.

f(a)(z — a) + O((z — @)?) in a neighborhood of
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Quasiconformal mapping

Let K > 1 and D, D’ be the domains in the complex plane C. An
orientation-preserving homeomorphism f : D — D’ is a
K-quasiconformal mapping if f satisfies the following:

© For any closed rectangle R:={z=z+iy|la<z <bc<y<d}
in D, f is absolutely continuous on almost every horizontal and
vertical line in R.

@ The dilatation condition

F(2)] < B2 1£2)] (1)

K+1

holds almost everywhere in D, where

o= (fe —ify)/2, fz = (fo +ify)/2 and z = = + iy.
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It follows from the definition that the quasiconformal mapping
f: D — D' has partial derivatives f,, f= almost everywhere in D.
Further f is differentiable a.e. in D, i.e. the real-linear approximation

f(z) — f(z0) = f2(20)(z — 20) + fz(20)(z — 2z0) + o(|z — 20])

holds a.e. in zg € D.

Figure. Quasiconformal mapping
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@ The Beltrami coefficient can be defined as

_ f=(?)

(2)

a.e. in D for a qausiconformal mapping f, which is a measure of

non-conformality.
o If uy(z0) =0 at zo € D, f is conformal at zo.

The ratio of major to minor axis:
I+l u(z)!
1-Tu(z)!

arg f.(z,)
arg u
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Let D1, Dy be domains, and p € L°°(D1)1. Assume that f1 : D1 — D>
r— is a pu-conformal mapping and h : D2 — Ds a conformal mapping.
mappings Then fo = ho f1 is u-conformal.

h

Remark If we have self p-conformal mappings of D, then we can obtain
p~conformal mapping from D to arbitrary simply connected domains.
Further many efficient methods for the numerical conformal mappings

are known.
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Set L*°(D)1 := {p: D — C | u is measurable on D with ||u]|e < 1}.

Theorem (Measurable Riemann mapping theorem)

Let p € L=°(C)1. Then there exists a quasiconformal mappings
f : C — C whose Beltrami coefficient coincides with p almost
everywhere in C. This mapping is uniquely determined up to a
conformal mapping of C onto itself.

Corollary

Let D, D’ be bounded simply connected domains in C and

u € L=(D)1. Then there exists a quasiconformal mapping f : D — D’
whose Beltrami coefficient coincides with p almost everywhere in D.
This mapping is uniquely determined up to a conformal mapping of D’
onto it self.

o We say a quasiconformal mapping of D is p-comformal
(€ L*°(D)y) if its Beltrami coefficients coincide with ;o almost
everywhere in D.

@ f is a homeomorphism from D to D’ which satisfies the Beltrami
equation fz = uf. on a.e. D.
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Lemma (Good approximation lemma)

Let {pn € L°°(C)1}nen and satisfies ||pin|looc < k < 1 for alln € N, and
such that the pointwise limit j1(z) := limp— o0 pn (2) exists almost
everywhere. Let f, : C — C be the p.,-conformal mappings which fix
0,1,00. Then fn(z) converges to f(z) uniformly, where f is the
p-conformal mapping which fix 0,1, co.

Basically this lemma states that: if the Beltarami coefficient of a
quasiconformal mapping g approximate u, then g approximate
p-conformal mapping.
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Applications and known methods

Applications of quasiconformal mappings:
@ Complex dynamics

Gaidashev, D., and Yampolsky, M. (2007). Cylinder renormalization of
Siegel disks. Experimental Mathematics, 16(2), 215-226.

@ Medical image processing

Lui, L. M., Wong, T. W., Zeng, W., Gu, X., Thompson, P. M., Chan, T.

F., and Yau, S. T. (2012). Optimization of surface registrations using
beltrami holomorphic flow. J. Scientific Computing, 50(3), 557-585.

@ etc.
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Corollary

Let D be the unit disk and € L°°(D)1. Then there exists unique
u-conformal mapping f : D — D with f(0) = f(1) —1=0.

For given € L°°(ID)1, we will construct an approximant of
p-conformal self-mapping of D with f(0) = f(1) —1=0.
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Figure. An triangulation of I which consists of 4096 2-simplices.

We say a Euclidian simplicial complex T" which consist of finite closed
2-simplices {7;} in C form a triangulation of D if:

@ P :=|T|is a closed simple jordan polygon whose vertices lies on
the boundary of the unit disk 9D where |T'| is the union of all
2-simplices in T,

@ each 1-face I of any 2-simplex 7; of T is either:

o an edge of P, or

o there exists unique j(j # ¢) such that lx is an edge of a 2-simplex
75 in T




Algorithm for

quasiconformal Observation

mappings

H. Shimauch

AVA

AN
AN

oK/
o

A\
2
KN

~/

0
o

W
<]
5

AV,
v
6
Shi

K/
<>
%Avﬁ
N/

SRR
\/

<]
Kk
SENA

V4

Y%

S
55
v

v
<
Ko

Setting

0
X
%Y

o
K

o
>>§§‘
\A

<7
5
Vs

5
%
ara

K

<

]
N

s 0

Kt

Yav, o
AN

VAV
s N

NS
AVay BN
o

Y
\\
v

v,

0%
Vavist
VAV:
N

YavaVAVAN

<

CED
S

%)

1%
2
VAV

AVAY

Y

5
Sk
N

N
<

Figure: (Left) A triangulation T% of the unit disk, (Right) A triangulation T,
of D which is simplicially equivalent to T,.

o Let T, T, be triangulations of .

e If T, and T, are simplicially equivalent, then the piecewise linear
mapping f : |T:| — |Tw| which sent 2-simplex in T to the
corresponding 2-simplex in T, linearly, is a homeomorphism
between |T;| and |T|.

@ We say f is induced piecewise linear mapping by 7, and T,.
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Figure: (Left) A triangulation T% of the unit disk, (Right) a triangulation T,
of D which is simplicially equivalent to T .

@ The Beltrami coefficients s of f : |T.| — |Tw| is defined on each
interior of 2-simplex.

o Actually puy satisfies maxrecr, |pus|- — 0.37] < 0.012.

@ f can be viewed as an approcimant of p-conforaml mapping where
u(z) =0.31.

17 /60



Algorithm for

quasiconformal Formulation of our problem

mappings

Setting For given triangulation of the unit disk 7%, we say f : |T>| — C is in
PL(T) if f is continuous on |T%|, and is linear on each 2-simplex in
|T=1.

We aim an algorithm as the following.
Input:
e € L>®(D),.
@ A triangulations of the unit disk T, whose vertices include 0 and 1.

Output:

@ A triangulations of the unit disk T3, = T, whose vertices include 0
and 1 in suitable position, so that the Beltrami coefficient pg of
the induced piecewise linear mapping g : |T.| — |Tw| € PL(T%),
reduce ||¢ — piglloo ON each 7 € 7.
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Logarithmic cordinates

o Let p € L*=(D);.
o Set pu(z) i= Zu(L) for z € C\D.

Theorem (Recall: Measurable Riemann mapping theorem)

For given i € L*°(C)1, there exists unique u-mappings f : C — C
which fix 0,1, co.

We want to note that:

Corollary

If w € L>°(C)y and pu(z) = u(1/2)z%/22, then the restriction of
u-conformal mapping f* : C — C which fix 0 and 1 to the unit disk, is
a self p|p-conformal mapping of D which fix 0 and 1.

o Actually f|p is desired quasiconformal mapping where f: C — C is
p-conformal mapping.
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@ Take the logarithmic coordinates Z = log z. Then
F(Z) :=log f(e?) have the symmetry with respect to the
imaginary axis.

o First we approximate F/(Z) := log f*(e?) on a finite rectangle.
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Take M, N € N. We define (M + 1)N vertices

Zjk =

V3mj | 2m(k+ (j mod 2)/2) .
N + N i 3)

for —M < j<0and 0 <k < N — 1. Our mesh contains M x N
rightward pointing 2-simplexes defined by

T'Jr _ COhV(Zj,kal, ijl,lm Zj’k), ] even, (4)
Ik Conv(Zj-1,k, Zj—1,k+1, Zjk), J odd,
for —M + 1 < j < 0 where Conv(Z1, Z2, Z3) is the 2-simplex which
vertices are Z1, Z2, Z3. There are also M x N leftward pointing
2-simplexes
o= COnV(ijLl’kfl, Zj+17k, Zj,k)> jeven, (5)
e Conv(Zjt1,k, Zjv1,k+1, Zix), J odd,

for —M < j < -—1.
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In the case the triangles Ti, are equilateral. We extend this mesh
symmetrically to the right half-plane as

Zjk = 0(Z-jx)
where g is the reflection of the imaginary axis
0(2) =-Z. (6)

Now we have (2M + 1)N vertices and 4M N 2-simplexes. We say this
the basic mesh in the logarithmic coordinates.




Algorithm for . . . .
o Observation: linear quasiconformal mapping

quasiconformal

mappings
H. Shimauchi

Proposition

Let z1, z2, w1, w2 € C with z1 # 2o and w1 # wa. For given complex
constant p € D, there is a unique p-conformal affine linear mapping
At B(z) = B|u; z1, z2; w1, w2](z) which sends z; to w; (i =1,2).

Blu;2,,2,;w,,w, 1

Z; Z5 w, w,
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Let u, a, b be complex constants with a # 0, |u] < 1. We consider the

p-conformal real-linear mapping

L) = AT (7)
Proposition
B(z) is given by
B(z) = wi+ %Lu(z — 21)
- et e

Remark We note that the coefficients of w1, w2 in the last expression
are never 0, 1, or oo if 21, 22, 23 are distinct.

Corollary

Let p-conformal affine linear map takes z1, z2, z3 to w1, wa, w3
respectively. Then the following holds:

LH(ZQ —23)w1 —‘y—LH(Zg —Zl)wz—‘rLu(Zl —Zz) wsz = 0. (8)
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Corollary

Let z; € C (i = 1,2,3) noncollinear and w; € C (i =1,2,3)
noncollinear. There is a unique affine linear mapping which sends z; to
w; (1 =1,2,3). Further its Beltrami coefficient is equal to

_ (2 —21)(ws —wi) — (23 — 21) (w2 —w1)
T TEmw—w) - @ mw—w) O
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The Beltrami coefficients v(Z) of F(Z) are given as follows by the
chain rule for quasiconformal mappings :

Algorithm

zZ
€ —2ilm
v(Z) = w(e”) =7 = p(e)e ™" Re Z <0, (10)
Using v, we set the Beltrami coefficients as v(Z) = v(o(Z)) for
Re Z > 0.

We will write Iz_ﬁ for the average value of v(Z) on the 2-simplexes Tﬂ.
It is useful for numerical work to take the average of v(Z) over the
three vertices as an approximation of this average, at least when v is
continuous. Let us note that

Vik =V—jk, J>0. (11)
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Triangle equations

For all rightward pointing 2-simplicies T;; € TN = {T]ik} we

construct following M N linear equations:

where

a;rijk + bjijka + cjijkaH =0 (12)

= Luy (Zj—1,6-1 — Zj-1,k), J even,
Ly (Zj—1x — Zj—1,k+1), J odd,

_ Ly (Zj—16 — Zjk)s J even, (13)
Ly (Zj—1,k41 — Zji), j odd,

= Ly (Zjk — Zj—1,6—1), J even,
Lij(ZJ' = Zj—1,k)s j odd.
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where

ajk

b

Cjk

|
|
2

L
L
L
L
L

Vik

Vik

Vik

Vik

Vik

VJk

(Z
(Z
(Z
(Z
(Z;
(Z;

Further M N linear equations for the leftward pointing 2-simplexes 77,
are constructed Corollary 4,

a; Wik + b5 Wis1k—1 4+ cpWiv1n =0 (14)

i+1,k—1 — Zj41,k), J even,
i+1,k — Zj+1,k+1), J odd,

i1,k — Zjk)s j even, (15)
1641 — Zj k), J odd,

Zj+1,6—1). J even,
Zj+1k),  Jodd.

Remark We have totally 4M N triangle equations.
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Boundary equations

Originally, the image of the infinitesimal circle by a quasiconformal
mapping, is infinitesimal ellipse. The shape of this ellipse is depend on
the Beltrami coefficients. Under this situation, we will add the following
equations.
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Let di be the images of these points under the real-linear mapping L,
i.e.

di = Ly (eZ=M%) = r_prL (e2™FN), 0< k<N -1,

where po denotes the average value of p(z) inside this circle. These
vertices lie on an ellipse. We want a condition that the image of C is
unknown complex nonzero constant multiple of the ellipse {dx}. Hence
the boundary equations which achieve above condition are the following
2(N — 1) equations

W_mpk —W_mr—1 = Dy,
Wyre —Wumr-1 = Dxg, (16)
where Dy = log Cdy — log Cdi—1 = logdy — log di—1 and

1 <k < N — 1. The magnitude of r_,s does not influence the value of
Dy.
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Nomalization

Finally, for normalization of the solution we add one more equation,
Wo,o =0, (17)

which is self-symmetric. This says that F'(0) = 0, or equivalently,

F1) =1.
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Associated linear system

In argument above, we construct ne = 4M N + 2(N — 1) + 1 complex
linear equations for the n, = (2M + 1)N unknown variables Wy,
—M<j<M,0<k<N-—1. Let p=p(j, k) be an fixed bijection
from the set of index pairs {(j, k)} to the range 1 < p < n,. Using this
bijection p, we will rename the variables in a single vector W with

W= {Wp} = {Wjk} (18)
for the convenience. The linear system now takes the form:
AW =B (19)

where A = (A; 1) is the ne X ny-type complex matrix and B = (By) is
a complex vector of length n.. When we take a pair of N, M, the mesh
{Z;1} is fixed, and linear system above is defined. We will say that this
linear system (A, B) is the associated linear system to the collection of
v-values {v;r}. The coefficients depend both on v, and Zjy.
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Since our linear system is over determined, we chose the standard least

Algorith i i
gorithm squares method for the approximation.

Let m,n € N with m > n. Let AW = B an overdetermined linear
system where A € M, »(C), B € C™ and unknown vector W & C".
We call W is the least squares solution of (A, B) if W minimize the
residual vector ||[AW — B)||2.
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The algorithm is summarized as follows.

Input: The Beltrami coefficient p € L°°(D); and the dimensions M, N
for a simplicial complex {Z; 1} in the Z-plane.

@ Calculate the averages of the Beltrami coefficients v; 5 on each
triangle in the logarithmic coodrinates.

@ Calculate the coefficients of the associated linear system (A, B) of
{vjr} and T N as prescribed .

© Calculate the least squares solution W to the associated linear
system (A, B), and arrange the entries of W to form the mesh
{Wik}.

@ 4. Calculate wjr =expWjg for —M <j<0and 0 <k <N — 1.

Output: The piecewise linear mapping such that z;, — w;i where

Zjk = €xXp Zjk-
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The image of the circle |z| = 1 under the mapping L, is an ellipse with
semiaxes 1, (1 — |u|)/(1 + |p|) slanted in the directions (1/2) arg p,
(1/2)(arg p + m) respectively. This ellipse is sent by the conformal
linear mapping Hy/(2,/m),0 to the ellipse with semiaxes a,b. Then the
ellipse is transformed conformally to the unit disk, by an explicit formula
for the conformal mapping to D from this ellipse.
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The algorithm was applied for the constant Beltrami derivatives
pn=0.1, 0.3, 0.5, 0.7, and meshes defined by N = 16, 32, 48, 64, 72,
84, with M equal to the least multiple of 4 no less than N log N/(7+/3).

N) || (12,16) | (24,32) | (36,48) | (52,64) | (60,72) | (72,84)

I 01 0.012 0.0031 | 0.0014 | 0.0008 | 0.0006 | 0.0004

n=0.3 0.0274 0.007 0.0031 | 0.0018 | 0.0014 0.001
n=0.5 0.0615 | 0.0205 | 0.0109 | 0.0065 | 0.0051 | 0.0038
n=0.7 0.2439 | 0.1201 | 0.0856 | 0.0627 0.053 0.0412

Table: The maximum of the absolute errors between the solutions and the real
values of some constant Beltrami derivative and M ~ N log N/(7+/3).

In the last case there are 24359 equations in 14196 variables. It took 4
seconds to solve the full set of equations.




Algorithm for

quasiconformal
mappings

H. Shimauchi

Numerical experiments
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0.015
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0.005

Figure: Numerical errors of algorithm for different values of (M, N) with
w=0.3.

The horizontal axis indicates the distance r; = |z;| of the z-points
from the origin; the vertical axis gives the maximum discrepancy (over
k) of the calculated value of wjx from the true value.
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Let ¢: [0,1] — [0,1] be an increasing diffeomorphism of the unit
interval. Then the radially symmetric function

f(2) = p(|z])e' 5= = w(\z\)ﬁ (20)

Numerical experiments

has Beltrami derivative equal to

(2) = 2|9’ (2)/p(2) =1 2
2]’ (2)/p(2) + 1%

when z # 0. As an illustration we will take
o(r) = (1 —cos3r)/(1 — cos3).

The resulting Beltrami derivative satisfies ||1t]|oc = 0.65 approximately.
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Numerical experiments 04+

021

0.2 04 0.6 0.8 1.0
Figure. ¢ and T3,

(M.N) || (12,16) | (24,32) | (36,48) | (52,64) | (60,72) | (72,84)
Error H

0.0398 | 0.0135 | 0.0058 | 0.0034 | 0.0027 | 0.0020

Table. The domain points z;, on the real axis were selected, and the
values of wjj produced by the algorithm were compared with with the
true values ©(|z;x|).
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Numerical experiments

Sectrial quasiconformal mappings

In a similar spirit, we let ¢: [0,27] — [0, 27] be an increasing
diffeomorphism. Write 1)(e?) = e'¥(?). Then the sectorially symmetric
function

&)=k () (22)
has Beltrami derivative equal to
_1-9(0) 2
M= ) = )

when z # 0. As an example we will take

0

= 0<o<nr
=< 2 =7 ="
(o) {;’+““"’”, 7 <0<

»
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Figure. ¥(0) and T\,

(M.N) || (12,16) | (24,32) | (36,48) | (52,64) | (60,72) | (72,84)
I | | |

Error || 0.0712 ‘ 0.0362 | 0.0251 ‘ 0.0193 | 0.0173 | 0.0150

Table. The arguments of the final boundary values on the unit circle
were compared with the true values ().
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Trivial Beltrami coefficient

Let 4 € L*(D) with ||pt]|eo < 1. If the corresponding normalized
solution f* satisfies f*(z) = z on the unit circle,  called a trivial
Beltrami coefficient. Trivial Beltrami coefficients play an important role
in the theory of Teichmiiller space. T. Sugawa showed a criterion for
the triviality of the Beltrami coefficients, and gave an example for a
trivial Beltrami coefficient. Let N be a non-negative integer and a; ()
(1 €5 < N) be essentially bounded measurable functions in ¢ > 0 so

that v "
o) = 2 (log ) (&)

satisfies ||t]loo < 1. Then his results implies that p is a trivial Beltrami
coefficient. For the experiment, we chose

2 (sin10z\7™"
aj(z) = 3 3 .
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Convergence

Theorem (Porter, S ,2014)
Let s € N and Ms, Ns € N be strictly increasing sequences which satisfy

c1Nslog Ns < M, < caNg log N (24)

for constants ci1, ca where c1 > 1/(mv/3). If 1 € Loo(D)1 U C*(D), then
the following holds.

i. If s is large enough, the points {z;ig} and the points {wﬁi
produced by the algorithm form the vertex sets of triangulations
T and T2 of the unit disk I. Furthermore, for any fixed
compact set K C intD, K C |T{¥| and K C |T| hold when s is
large enough.

ii. The mappings f*) converge to the u-conformal mapping f

normalized by f(0) = f(1) — 1 = 0 uniformly on compact subsets
of D as s — oo.
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Input:

o 1€ CY(D)N L=(D);.
@ My, Ns — 0o as s — 0o with ¢1 Nslog Ny < My < coNslog Ns.

Convergence

Output:

o {g® e PL(TZ(S))} st. ¢ = f*as s — oo

Remark We conjecture that the condition ;1 € C' is overly restrictive by
the numerical experiments.
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o Calculations show that:

|AsW, — Byll2 — 0.

@ We obtain Fj is a local homeomorphism and the image of the

Convergence

boundary form a Jordan polygon.

@ Using the good approximation lemma and the following lemma, we
obtain the convergence.

Lemma

Let T, := {7;} be a triangulation of the unit disk D with P, := |T.| is a
simple jordan polygon of k sides. Suppose f: |T.| — D € PL(T%.)
preserve the orientation on each T € T, and maps 0|T| to a boundary
of a simple polygon P,, with k sides on the unit circle
homeomorphically. Then the secant map induced by f and T, is a
orientation preserving homeomorphism from |T%| to P.
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Modified Algorithm

Theorem (Principal Solution)

Let p: C — C be a measurable function with compact support and
||lloo < 1. Set p(z) = 0 on the outside of its support. Then there
exists unique p-conformal mapping f : C — C of the plane which
satisfies f(0) =0 and f(z) = z+ O(1/z) as z — oo.

We modify our algorithm for the principal solution to the Beltrami
equation with compactly supported p.
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mappings Let X, ={z€C:—m < Re z<m,—m < Im z < m} be a square.
X, subdivide into (2n)%-squares (same size, edge length = m/n).

Modified Algorithm

Figure: Approximation of Principal solution

We use the triangle equation with the condition f(z) =~ z as z — o©
and normalization f(0) = 0.
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Conclusion

Conclusion

@ We propose an algorithm for numerical quasiconformal mappings.

@ The approximant converge to the true solution at least in the case
where the Beltrami coefficients are in C*.
@ For the details:

Porter, R. Michael, and Hirokazu Shimauchi. Numerical solution of
the Beltrami equation via a purely linear system, submitted.
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