Knots in $\mathbb{R}P^3$ and their lifts

Yuta Nozaki

The University of Tokyo

November 7, 2015

トポロジーとコンピュータ 2015

Contents

- Background
- Main results

2 Proofs

- Proof of Theorem
- Proof of Corollary

Motivation

 $\begin{array}{l} \mathcal{K}: \text{ a knot in } \mathbb{R}P^3 \text{ with } [\mathcal{K}] \neq 0 \in \mathcal{H}_1(\mathbb{R}P^3;\mathbb{Z}) \cong \mathbb{Z}/2. \\ \widetilde{\mathcal{K}}: \text{ the lift (preimage) of } \mathcal{K} \text{ by } p: S^3 \to \mathbb{R}P^3. \rightsquigarrow \widetilde{\mathcal{K}} \text{ is a knot in } S^3. \end{array}$

Problem (Matveev '15 in ILDT, cf. Fox '61)

Do there exist non-equivalent knots in $\mathbb{R}P^3$ such that their lifts to S^3 are equivalent knots?

Remark

Since $\text{Diff}^+(\mathbb{R}P^3)/\text{diffeotopy} = \{\text{id}_{\mathbb{R}P^3}\}, K_0 \text{ is ambient isotopic to } K_1 \text{ iff } (\mathbb{R}P^3, K_0) \cong (\mathbb{R}P^3, K_1).$

Theorem (Sakuma '86, Boileau-Flapan '87)

Free involutions on (S^3, K) are conjugate to each other.

It follows that the answer to Matveev's question is NO.

Definition

$$n(L) := |\{L' \subset \mathbb{R}P^3 \mid \widetilde{L'} \sim L\}| \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$$
 for a link L in S^3 .

Problem

$$\bullet \quad n(K) = \begin{cases} 0 & \text{if ??,} \\ 1 & \text{if ??,} \end{cases} \text{ for a knot } K.$$

▶ \exists ?L: a link s.t. n(L) > 1.

• How about extending it to the lens spaces L(p,q)?

Previous studies

Theorem (Hartley '81)

- $n(T_{p,q}) \ge 1$ iff $2 \nmid pq$, where $T_{p,q}$ is the (p,q)-torus knot.
- $n(K) \ge 1 \& c(K) \le 10 \text{ iff } K = 0_1, \ 10_{124}, \ 10_{155} \text{ or } 10_{157}.$

Theorem (Manfredi '14)

" $n_{L(p,q)}(0_1)$ " > 1, where p > 3 is an odd and $q = (p \pm 1)/2$.

Main results

Definition

$$G$$
: a group. $G^2 := \langle \{g^2 \mid g \in G\} \rangle < G$.

Theorem (N.)

If
$$\widetilde{K}$$
 is a knot, then $\pi_1(S^3 \setminus \widetilde{K}) \cong \pi_1(\mathbb{R}P^3 \setminus K)^2$.

Corollary (cf. Hartley's theorem)

Let K be the (left-/right-handed) trefoil or a knot with Out(G(K)) = 1. Then n(K) = 0.

Remark (see Kawauchi (ed.) '96, Kodama-Sakuma '92) Out(G(K)) = 1 for 9₃₂, 9₃₃ or 10_n (n = 80, 82-87, 90-95, 102, 106, 107, 110, 117, 119, 148-151, 153) (or their mirror images).

Y. Nozaki (The Univ. of Tokyo)

Knots in $\mathbb{R}P^3$ and their lifts

Contents

- Background
- Main results

2 Proofs

- Proof of Theorem
- Proof of Corollary

Proof of Theorem

Subgroup generated by the squares

Lemma

- $G^2 := \langle \{g^2 \mid g \in G\} \rangle$ has the following properties:
 - $[G, G] \triangleleft G^2 \triangleleft G$.
 - If G is finitely generated, then $G/G^2 \cong (\mathbb{Z}/2)^{\oplus n}$ for some $n \ge 0$.

Example

•
$$G = (\mathbb{Z}/2)^{\oplus n} \rightsquigarrow G/G^2 \cong (\mathbb{Z}/2)^{\oplus n}$$

•
$$G = \mathbb{R}_{>0} \rightsquigarrow G/G^2 = 0.$$

•
$$G = \mathbb{Q}_{>0} \rightsquigarrow G/G^2 \cong \bigoplus_{p: \text{ prime}} \mathbb{Z}/2.$$

Let $p: S^3 \to \mathbb{R}P^3$ be a double covering. Let $\widetilde{G} := \pi_1(S^3 \setminus \widetilde{K})$, $G := \pi_1(\mathbb{R}P^3 \setminus K)$.

Proof of $\widetilde{G} \cong G^2$.

 $G \twoheadrightarrow G/G^2 \cong (\mathbb{Z}/2)^{\oplus n}$ induces $G^{ab} \cong \mathbb{Z} \twoheadrightarrow (\mathbb{Z}/2)^{\oplus n}$. $\rightsquigarrow n \leq 1$. On the other hand, p induces

$$1 o \widetilde{G} \xrightarrow{p_*} G o \mathbb{Z}/2 o 0$$
 (exact).

Using $G^2 < p_*(\widetilde{G}) < G$, we have

$$[G:G^2] = [G:p_*(\widetilde{G})][p_*(\widetilde{G}):G^2] \geq 2.$$

 $\rightsquigarrow n \ge 1$. It follows that $[p_*(\widetilde{G}) : G^2] = 1$.

Definition

G: a group.

• G is complete if Out(G) = 1 & Z(G) = 1, that is, $G \to Aut(G)$, $g \mapsto Ad_g$ is an isomorphism.

• G is an S-group if $G \cong G'^2$ for some group G'.

Example

- \mathfrak{S}_n is complete unless $n \neq 2, 6$.
- \mathfrak{A}_n is an S-group. Indeed, $\mathfrak{A}_n = (\mathfrak{A}_n)^2 = (\mathfrak{S}_n)^2$.

Our strategy to prove n(K) = 0 is to show that G(K) is NOT an S-group. We divide knots into two classes:

- $\operatorname{Out}(G(K)) = 1 \rightsquigarrow G(K)$ is complete & $G(K)^2 \neq G(K)$.
- $K = 3_1 \rightsquigarrow G(K)$ is not complete. (However, \mathfrak{S}_3 is complete.)

Proof of n(K) = 0 when Out(G(K)) = 1

Lemma (Haugh-MacHale '97)

If G is complete & $G^2 \neq G$, then G is not an S-group.

Fact

- $\operatorname{Out}(G(T_{p,q})) \cong \mathbb{Z}/2.$ (Schreier '24)
- Z(G(K)) = 1 ⇔ K is neither a torus knot nor the unknot. (Burde-Zieschang '66)

 \rightsquigarrow G(K) is complete for a knot K with Out(G(K)) = 1.

Lemma

Let K be a knot in
$$S^3$$
. Then $G(K)^2 \neq G(K)$.

Proof.

Let G := G(K). We have the following commutative diagram.

$$(G^{2})^{\mathrm{ab}} \xrightarrow{\mathrm{incl}^{\mathrm{ab}}} G^{\mathrm{ab}} \xrightarrow{\simeq} \mathbb{Z}$$

$$(G^{\mathrm{ab}})^{2} \xrightarrow{\simeq} 2\mathbb{Z}$$

Hence, $(G^{ab})^2 \hookrightarrow G^{ab}$ is not surjective, and thus $(G^2)^{ab} \to G^{ab}$ is not surjective. Therefore, $G^2 \neq G$.

Proof of $n(3_1) = 0$

Remark

 $G(3_1)$ is not complete since $Z(G(3_1)) \neq 1$.

Definition

G: a group, H: a subgroup of G. H is characteristic if f(H) < H for $\forall f \in Aut(G)$.

Lemma (Sun '79)

If G: an S-group, $H \lhd G$: characteristic, then G/H is an S-group.

Lemma (Recall)

If G: an S-group, f: $G \rightarrow G'$: a homomorphism, Ker f: characteristic, then G' is an S-group.

$$G(3_1) \cong \langle a, b \mid a^3 = b^2 \rangle.$$

Define $f \colon G(3_1) \twoheadrightarrow \mathfrak{S}_3$ by $a \mapsto (123) = \sigma, b \mapsto (12) = \tau.$

Proof of $n(3_1) = 0$.

Assume that $G(3_1)$ is an *S*-group. Since Ker *f* is characteristic (see the next slide), by the above lemma, \mathfrak{S}_3 is an *S*-group. This is a contradiction (see Example in p. 10).

Lemma

$\operatorname{Ker}(f: G(3_1) \twoheadrightarrow \mathfrak{S}_3)$ is characteristic.

Proof.

Schreier ('24) proved that Aut(
$$G(3_1)$$
) is generated by $I = Ad_a$,
 $J = Ad_b$ and K , where $K(a) = a^{-1}$, $K(b) = b^{-1}$.
Hence, it suffices to prove $K(\text{Ker } f) < \text{Ker } f$, namely,
" $g \in \text{Ker } f \Rightarrow f(K(g)) = 1$ ".

Recall $G(3_1) \cong \langle a, b \mid a^3 = b^2 \rangle$.

Future research

I would like to

- detect when $\pi_1(S^3 \setminus K)$ is not an S-group.
- ▶ find a gap between "S-group" and "n(K) = 1".
- find a link L with n(L) > 1.
- ▶ consider $G^p = \langle \{g^p \mid g \in G\} \rangle \lhd G$ in the case of L(p,q).

