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Introduction Background

Motivation

K : a knot in RP3 with [K ] ̸= 0 ∈ H1(RP3;Z) ∼= Z/2.
K̃ : the lift (preimage) of K by p : S3 → RP3. ⇝ K̃ is a knot in S3.

Problem (Matveev ’15 in ILDT, cf. Fox ’61)

Do there exist non-equivalent knots in RP3 such that their lifts to S3

are equivalent knots?

Remark

Since Diff+(RP3)/diffeotopy = {idRP3},
K0 is ambient isotopic to K1 iff (RP3,K0) ∼= (RP3,K1).
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Introduction Background

Theorem (Sakuma ’86, Boileau-Flapan ’87)

Free involutions on (S3,K ) are conjugate to each other.

It follows that the answer to Matveev’s question is NO.

Definition

n(L) := |{L′ ⊂ RP3 | L̃′ ∼ L}| ∈ Z≥0 ∪ {∞} for a link L in S3.

Problem

▶ n(K ) =

{
0 if ??,

1 if ??,
for a knot K.

▶ ∃?L: a link s.t. n(L) > 1.

▶ How about extending it to the lens spaces L(p, q)?
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Introduction Background

Previous studies

Theorem (Hartley ’81)

▶ n(Tp,q) ≥ 1 iff 2 ∤ pq, where Tp,q is the (p, q)-torus knot.

▶ n(K ) ≥ 1 & c(K ) ≤ 10 iff K = 01, 10124, 10155 or 10157.

Theorem (Manfredi ’14)

“nL(p,q)(01)” > 1, where p > 3 is an odd and q = (p ± 1)/2.
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Introduction Main results

Main results

Definition

G : a group. G 2 := ⟨{g 2 | g ∈ G}⟩ < G .

Theorem (N.)

If K̃ is a knot, then π1(S
3 \ K̃ ) ∼= π1(RP3 \ K )2.

Corollary (cf. Hartley’s theorem)

Let K be the (left-/right-handed) trefoil or a knot with
Out(G (K )) = 1. Then n(K ) = 0.

Remark (see Kawauchi (ed.) ’96, Kodama-Sakuma ’92)

Out(G (K )) = 1 for 932, 933 or 10n (n = 80, 82–87, 90–95, 102, 106,
107, 110, 117, 119, 148–151, 153) (or their mirror images).

Y. Nozaki (The Univ. of Tokyo) Knots in RP3 and their lifts November 7, 2015 6 / 16



Proofs

Contents

1 Introduction
Background
Main results

2 Proofs
Proof of Theorem
Proof of Corollary

Y. Nozaki (The Univ. of Tokyo) Knots in RP3 and their lifts November 7, 2015 7 / 16



Proofs Proof of Theorem

Subgroup generated by the squares

Lemma

G 2 := ⟨{g 2 | g ∈ G}⟩ has the following properties:

▶ [G ,G ] ◁ G 2 ◁ G.

▶ If G is finitely generated, then G/G 2 ∼= (Z/2)⊕n for some n ≥ 0.

Example

▶ G = (Z/2)⊕n ⇝ G/G 2 ∼= (Z/2)⊕n.

▶ G = R>0 ⇝ G/G 2 = 0.

▶ G = Q>0 ⇝ G/G 2 ∼=
⊕

p: prime Z/2.
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Proofs Proof of Theorem

Let p : S3 → RP3 be a double covering.
Let G̃ := π1(S

3 \ K̃ ), G := π1(RP3 \ K ).

Proof of G̃ ∼= G 2.

G ↠ G/G 2 ∼= (Z/2)⊕n induces G ab ∼= Z↠ (Z/2)⊕n. ⇝ n ≤ 1.
On the other hand, p induces

1 → G̃
p∗−→ G → Z/2 → 0 (exact).

Using G 2 < p∗(G̃ ) < G , we have

[G : G 2] = [G : p∗(G̃ )][p∗(G̃ ) : G 2] ≥ 2.

⇝ n ≥ 1.
It follows that [p∗(G̃ ) : G 2] = 1.
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Proofs Proof of Corollary

Definition

G : a group.

▶ G is complete if Out(G ) = 1 & Z (G ) = 1, that is,
G → Aut(G ), g 7→ Adg is an isomorphism.

▶ G is an S-group if G ∼= G ′2 for some group G ′.

Example

▶ Sn is complete unless n ̸= 2, 6.

▶ An is an S-group. Indeed, An = (An)
2 = (Sn)

2.

Our strategy to prove n(K ) = 0 is to show that G (K ) is NOT an
S-group. We divide knots into two classes:

▶ Out(G (K )) = 1 ⇝ G (K ) is complete & G (K )2 ̸= G (K ).

▶ K = 31 ⇝ G (K ) is not complete. (However, S3 is complete.)
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Proofs Proof of Corollary

Proof of n(K ) = 0 when Out(G (K )) = 1

Lemma (Haugh-MacHale ’97)

If G is complete & G 2 ̸= G, then G is not an S-group.

Fact

▶ Out(G (Tp,q)) ∼= Z/2. (Schreier ’24)
▶ Z (G (K )) = 1 ⇔ K is neither a torus knot nor the unknot.

(Burde-Zieschang ’66)

⇝ G (K ) is complete for a knot K with Out(G (K )) = 1.
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Proofs Proof of Corollary

Lemma

Let K be a knot in S3. Then G (K )2 ̸= G (K ).

Proof.

Let G := G (K ). We have the following commutative diagram.

(G 2)ab inclab //

$$

G ab
∼= // Z

(G ab)2
?�

OO

∼= // 2Z
?�

OO

Hence, (G ab)2 ↪→ G ab is not surjective, and thus (G 2)ab → G ab is
not surjective. Therefore, G 2 ̸= G .
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Proofs Proof of Corollary

Proof of n(31) = 0

Remark

G (31) is not complete since Z (G (31)) ̸= 1.

Definition

G : a group, H : a subgroup of G .
H is characteristic if f (H) < H for ∀f ∈ Aut(G ).

Lemma (Sun ’79)

If G : an S-group, H ◁ G: characteristic, then G/H is an S-group.
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Proofs Proof of Corollary

Lemma (Recall)

If G : an S-group, f : G ↠ G ′: a homomorphism, Ker f :
characteristic, then G ′ is an S-group.

G (31) ∼= ⟨a, b | a3 = b2⟩.
Define f : G (31)↠ S3 by a 7→ (123) = σ, b 7→ (12) = τ .

Proof of n(31) = 0.

Assume that G (31) is an S-group. Since Ker f is characteristic (see
the next slide), by the above lemma, S3 is an S-group. This is a
contradiction (see Example in p. 10).
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Proofs Proof of Corollary

Lemma

Ker(f : G (31)↠ S3) is characteristic.

Proof.

Schreier (’24) proved that Aut(G (31)) is generated by I = Ada,
J = Adb and K , where K (a) = a−1, K (b) = b−1.
Hence, it suffices to prove K (Ker f ) < Ker f , namely,
“g ∈ Ker f ⇒ f (K (g)) = 1”.

Recall G (31) ∼= ⟨a, b | a3 = b2⟩.
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Proofs Proof of Corollary

Future research

I would like to

▶ detect when π1(S
3 \ K ) is not an S-group.

▶ find a gap between “S-group” and “n(K ) = 1”.

▶ find a link L with n(L) > 1.

▶ consider G p = ⟨{gp | g ∈ G}⟩ ◁ G in the case of L(p, q).
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