Non-Planar Graph Drawing

Yoshio Okamoto

The University of Electro-Communications

November 7, 2015

Applications		Network Analysis Information Visualization						
Algorithms		Graph Algorithms Graph Drawing Com				Comp	putational Geometry	
Mathematics		Graph Theory	Geometric Graph Theory Topological Graph Theory				Discrete Geometry	

1 Fundamentals

2 Right-Angle-Crossing Drawings

3 Quasi-Planar Graphs

4 Slope Numbers

Drawing

Every edge is drawn as a Jordan arc

Poly-line drawing

Every edge is drawn as a polygonal curve

A polygonal curve consists of line segments joined by bends

Straight-line drawing

Every edge is drawn as a straight line segment

Implications

Straight-line drawing \Rightarrow Polyline drawing \Rightarrow Drawing

Any pair of edges does not cross

A graph is planar if it admits a planar drawing

Facts on planar graphs

Convention: n = # vertices, m = # edges

 $\begin{array}{l} \textbf{G} \text{ planar, } n \geq 3 \\ \Rightarrow m \leq 3n - 6 \text{ (this is tight)} \end{array}$

(a consequence of Euler's formula)

2 G planar \Rightarrow G admits a straight-line planar drawing (Wagner '36, Fáry '48, Stein '51)

3 We can decide whether G is planar in O(n) time

(Hopcroft, Tarjan '74)

Open problem (planar integral drawing)

(Harborth's Conjecture)

Does every planar graph admit a straight-line planar drawing in which all edge lengths are integers?

Example of planar integral drawings

(Harborth, Kemnitz, Möller, Süssenbach '87)

1 Fundamentals

2 Right-Angle-Crossing Drawings

3 Quasi-Planar Graphs

4 Slope Numbers

Right-angle-crossing (RAC) drawings

Every crossing forms a right angle (90°)

Note: A planar drawing is a RAC drawing

Right-angle-crossing (RAC) drawings

Every crossing forms a right angle (90°)

Note: A planar drawing is a RAC drawing

 Every graph admits a polyline RAC drawing with at most three bends per edge

(Didimo, Eades, Liotta '11)

 Every graph of max degree 6 admits a polyline RAC drawing with at most two bends per edge

(Angelini, Cittadini, Di Battista, Didimo, Frati, Kaufmann, Symvonis '11)

 Every graph of max degree 3 admits a polyline RAC drawing with at most one bend per edge

(Angelini, Cittadini, Di Battista, Didimo, Frati, Kaufmann, Symvonis '11)

Facts on RAC drawings: Number of edges 1

G admits a straight-line RAC drawing, n ≥ 4
⇒ m ≤ 4n − 10 (this is tight)

```
(Didimo, Eades, Liotta '11)
```


- G admits a polyline RAC drawing with at most one bend per edge, n ≥ 3 ⇒ m ≤ ¹³/₂n - 13 (Arikushi, Fulek, Keszegh, Morić, Tóth '10)
- ► ∃ G with $m = \frac{9}{2}n O(\sqrt{n})$ that admits a polyline RAC drawing with at most one bend per edge (Arikushi, Fulek, Keszegh, Morić, Tóth '10)

Open problem

Give a tight bound for the number of edges in a graph that admits a polyline RAC drawing with one bend per edge

 G admits a polyline RAC drawing with at most two bends per edge ⇒ m ≤ 74.2n

(Arikushi, Fulek, Keszegh, Morić, Tóth '10)

► ∃ G with $m = \frac{47}{6}n - O(\sqrt{n})$ that admits a polyline RAC drawing with at most two bends per edge (Arikushi, Fulek, Keszegh, Morić, Tóth '10)

Open problem

Give a tight bound for the number of edges in a graph that admits a polyline RAC drawing with two bends per edge

It is NP-hard to determine if a given graph admits a straight-line RAC drawing

(Argyriou, Bekos, Symvonis '11)

Open problem

(Argyriou, Bekos, Symvonis '11)

Is it NP-hard to determine if a given graph admits a polyline RAC drawing with one (or two) bends per edge?

1 Fundamentals

2 Right-Angle-Crossing Drawings

3 Quasi-Planar Graphs

4 Slope Numbers

k-Quasi-planar graphs

Admits a drawing in which no k edges pairwise cross and any pair of edges intersect at most once (simple)

 K_6 is 3-quasi-planar

- A 2-quasi-planar graph is called planar
- ► A 3-quasi-planar graph is called quasi-planar

Big open problem(cf. Gärtner)For every fixed k, if G is k-quasi-planar, thenm = O(n)

Fact: When k = 2, if $n \ge 3$, then

 $m \leq 3n - 6$

When k = 3,

- $m < 13n^{3/2}$
- $m = O(n \log^2 n)$
- m = O(n) (Agarwal, Aronov, Pach, Pollack, Sharir '97)
- ▶ *m* ≤ 65*n*
- $m \leq \frac{13}{2}n 20$ when $n \geq 4$

How about a lower bound?

► $\forall n \exists$ a 3-quasi-planar graph with $m = \frac{13}{2}n - O(1)$ (Ackerman, Tardos '07)

(Pach '91)

(Pach, Sharokhi, Szegedy '96)

(Pach, Radoičić, Tóth '06)

(Ackerman, Tardos '07)

When k = 4,

- $m = O(n^{1.9975})$
- $m = O(n \log^4 n)$ (Pach, Sharokhi, Szegedy '96)
- $m = O(n \log^2 n)$ (Agarwal, Aronov, Pach, Pollack, Sharir '97)
- $m \leq 72n 144$ when $n \geq 3$

Open problem

Give a tight bound for # of edges in a 4-quasi-planar graph

(Pach '91)

(Ackerman '09)

When $k \ge 5$ fixed, $\mathbf{m} = O(n^{2-\frac{1}{25k^2}})$ $\mathbf{m} = O(n \log^{2k-4} n)$ $\mathbf{m} = O(n \log^{2k-6} n)$ $\mathbf{m} = O(n \log^{2k-8} n)$ $\mathbf{m} = O(n \log^{O(\log k)} n)$ $\mathbf{m} \le (n \log n) \cdot 2^{\alpha(n)^{c_k}}$

(Pach '91) (Pach, Sharokhi, Szegedy '96) (Agarwal, Aronov, Pach, Pollack, Sharir '97) (Ackerman '09) (Fox, Pach '12) (Fox, Pach, Suk '13)

Open problem

Give a tighter bound for # of edges in a k-quasi-planar graph

Open problem, probably

Is it possible to recognize a k-quasi-planar graph in poly time, for some fixed $k \ge 3$?

When k = 2, this is the recognition of planar graphs

1 Fundamentals

2 Right-Angle-Crossing Drawings

3 Quasi-Planar Graphs

4 Slope Numbers

The red edge has slope $\pi/4$ (45°)

Slope number of a straight-line drawing

slopes of the edges in the drawing

sl(G) = the min slope number of a straight-line drawing of G

Trivial lower bound

- The slope number $\geq \lceil \max \text{ degree}/2 \rceil$
- ▶ The slope number ≥ min degree

Why?

When max degree $\Delta \ge 5$ fixed,

▶ the slope number can be arbitrarily large (as *n* increases)

(Barát, Matoušek, Wood '06)

- ► $\exists G: sl(G) \ge n^{\frac{1}{2} \frac{1}{\Delta 2} o(1)}$ (Pach, Pálvölgyi '06)
- ► $\exists G: sl(G) \ge n^{1-\frac{8+\varepsilon}{\Delta+4}}$ (Dujmović, Suderman, Wood '07)

Open problem

(Dujmović, Suderman, Wood '07)

Does every graph with bounded degree have o(n) slope number?

When max degree $\Delta = 3$,

- ► sl(G) ≤ 5
- $sl(G) \leq 4$ if G connected

(Keszegh, Pach, Pálvölgyi, Tóth '08) (Mukkamala, Szegedy '09)

► sl(G) ≤ 4 (Mukkamala, Pálvölgyi '11)

even, the slopes can be chosen from $\{0, \pi/4, \pi/2, 3\pi/4\}$

Open problem

(Dujmović, Suderman, Wood '07)

Does every graph with max deg 4 have a bounded slope number?

- $sl(K_n) = n$ (Jamison '86)
- ► $sl(K_{n,n}) = n$ (Dujmović, Suderman, Wood '07)
- ▶ $\frac{1}{2}(a+b-1) \le \operatorname{sl}(K_{a,b}) \le \min\{b, \lceil \frac{b}{2} \rceil + a 1\}$ (where $a \le b$) (Dujmović, Suderman, Wood '07)

Open problem

(Dujmović, Suderman, Wood '07)

Determine $sl(K_{a,b})$ when a < b

bw(G) the bandwidth of G

•
$$\operatorname{sl}(G) \leq \frac{1}{2}\operatorname{bw}(G)(\operatorname{bw}(G)+1)+1$$

```
(Dujmović, Suderman, Wood '07)
```

Note:

$bw(G) \leq \Delta(G)$ when G interval	(Fomin, Golovach '03)
$bw({G}) \leq 2\Delta({G}) - 1$ when ${G}$ cocomparability	(Wood '06)
bw $(G) \leq 3\Delta(G)$ when G AT-free	(Wood '06)
$bw({{\mathcal{G}}}) \leq \Delta({{\mathcal{G}}})(\Delta({{\mathcal{G}}})+2)$ when ${{\mathcal{G}}}$ split	(Wood '06)

Open problem

(Dujmović, Suderman, Wood '07)

Does $sl(G) = O(\Delta(G))$ hold when G is an interval graph?

Algorithms

- It is NP-hard to determine the slope number of a given graph even when Δ(G) = 4 (Formann, et al. '93)
- A related problem for "planar slope numbers" is also NP-hard (Dujmović, Eppstein, Suderman, Wood '07)
- $O(n^4)$ -time construction algorithm for K_n (Wade, Chu '94)

What if you allow polylines?

► Every graph G admits a polyline drawing at most one bend per edge such that the number of slopes ≤ [Δ(G)/2] + 1

(Knauer, Walczak '15)

▶ The bound $\lceil \Delta(G)/2 \rceil + 1$ is tight when $\Delta(G) \leq 4$

(Felsner, Kaufmann, Valtr '14)

Open problem

(Knauer, Walczak '15)

 \exists a graph *G* that requires $\lceil \Delta(G)/2 \rceil + 1$ slopes in any one-bend drawing when $\Delta(G) \ge 5$?

1 Fundamentals

2 Right-Angle-Crossing Drawings

3 Quasi-Planar Graphs

4 Slope Numbers