Jørgensen numbers of some Kleinian groups on the boundary of the Schottky space

Ryosuke Yamazaki

The University of Tokyo

November 6, 2015 Topology and Computer 2015

Contents

Introduction

- Motivation
- Classification of elementary Kleinian groups
- Oichi-Sato's problem

Jørgensen numbers on the Riley slice

- The Riley slice of Schottky space
- An extensition of Oichi-Sato's theorem

3 Once punctured torus group

- Kissing Schottky group
- Jørgensen numbers of once punctured torus groups

Introduction Jørgensen numbers on the Riley slice Once punctured torus group Oichi-Sato's problem

Motivation

- A Kleinian group is a discrete subgroup of $\mathsf{Isom}^+(\mathbb{H}^n)$.
- $\mathsf{Isom}^+(\mathbb{H}^3)\cong \textit{PSL}\left(2,\mathbb{C}\right)$ (by the Poincaré extention)
- Σ : a complete hyperbolic 3-manifold.

$$\rho : \pi_1(\Sigma) \longrightarrow PSL(2,\mathbb{C})$$

 ρ is faithful $\Longrightarrow \rho(\pi_1(\Sigma))$ is a torsion-free Kleinian group.

• Conversely, if G is a torsion-free Kleinian group, \mathbb{H}^3/G is a complete hyperbolic 3-manifold.

We want to classify Kleinian groups in order to classify hyperbolic manifolds.

イロン イヨン イヨン イヨン

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

・ロト ・回ト ・ヨト ・ヨト

Elementary groups

Definition

A group $G < PSL(2, \mathbb{C})$ is elementary. $\stackrel{def}{\longrightarrow}$ There is a finite *G*-orbit in $\overline{\mathbb{H}^3}$.

Lemma

$G < PSL(2, \mathbb{C})$: a Kleinian group.

- G is elementary.
 - \Leftrightarrow The limit set $\Lambda(G)$ consists of 0, 1, or 2 points.
- G is non-elementary.
 - \Leftrightarrow The limit set $\Lambda(G)$ is an infinite set.

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Elementary groups

Definition

A group $G < PSL(2, \mathbb{C})$ is elementary. $\stackrel{def}{\longleftrightarrow}$ There is a finite *G*-orbit in $\overline{\mathbb{H}^3}$.

Lemma

```
G < PSL(2, \mathbb{C}): a Kleinian group.
```

- G is elementary.
 - \Leftrightarrow The limit set $\Lambda(G)$ consists of 0, 1, or 2 points.
- G is non-elementary.

 \Leftrightarrow The limit set $\Lambda(G)$ is an infinite set.

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

・ロ・ ・ 日・ ・ 日・ ・ 日・

Elementary groups

Definition

A group $G < PSL(2, \mathbb{C})$ is elementary. $\stackrel{def}{\longrightarrow}$ There is a finite *G*-orbit in $\overline{\mathbb{H}^3}$.

Lemma

- $G < PSL(2, \mathbb{C})$: a Kleinian group.
 - G is elementary.
 - \Leftrightarrow The limit set $\Lambda(G)$ consists of 0, 1, or 2 points.
 - G is non-elementary. \Leftrightarrow The limit set $\Lambda(G)$ is an infin

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

イロト イヨト イヨト イヨト

Elementary groups

Definition

A group $G < PSL(2, \mathbb{C})$ is elementary. $\stackrel{def}{\longleftrightarrow}$ There is a finite *G*-orbit in $\overline{\mathbb{H}^3}$.

Lemma

 $G < PSL(2, \mathbb{C})$: a Kleinian group.

• G is elementary.

 \Leftrightarrow The limit set $\Lambda(G)$ consists of 0, 1, or 2 points.

• G is non-elementary.

 \Leftrightarrow The limit set $\Lambda(G)$ is an infinite set.

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Classification theorem of elementary Kleinian groups

Theorem

A torsion-free elementary Kleinian group is conjugate to one of the following:

(1) A parabolic cyclic group: $\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle$ (2) A parabolic abelian group rank 2: $\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \right\rangle$ ($\Im \alpha > 0$) (3) A loxodromic cyclic group: $\left\langle \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \right\rangle$ ($|\lambda| \neq 0, 1$)

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

ヘロン ヘヨン ヘヨン ヘヨン

Jørgensen's theorems

• When is a non-elementary group discrete (i.e, a Kleinian group)?

Theorem (Jørgensen)

 $G < PSL(2, \mathbb{C})$: non-elementary group. G is a Kleinian. $\Leftrightarrow \forall f, g \in G, \langle f, g \rangle$ is a Kleinian.

Theorem (Jørgensen)

 $G:=\langle f,g
angle < PSL(2,\mathbb{C})$ is a non-elementary Kleinian group. Then,

$$J(f,g) := |tr^{2}(f) - 4| + |tr(fgf^{-1}g^{-1}) - 2| \ge 1$$

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

・ロン ・回 と ・ ヨン ・ ヨン

Jørgensen's theorems

• When is a non-elementary group discrete (i.e, a Kleinian group)?

Theorem (Jørgensen)

 $G < PSL(2, \mathbb{C})$: non-elementary group. G is a Kleinian. $\Leftrightarrow \forall f, g \in G, \langle f, g \rangle$ is a Kleinian.

Theorem (Jørgensen)

 $G:=\langle f,g
angle < PSL\left(2,\mathbb{C}
ight)$ is a non-elementary Kleinian group. Then,

$$J(f,g) := |tr^{2}(f) - 4| + |tr(fgf^{-1}g^{-1}) - 2| \ge 1$$

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

イロン スポン イヨン イヨン

Jørgensen's theorems

• When is a non-elementary group discrete (i.e, a Kleinian group)?

Theorem (Jørgensen)

 $G < PSL(2, \mathbb{C})$: non-elementary group. G is a Kleinian. $\Leftrightarrow \forall f, g \in G, \langle f, g \rangle$ is a Kleinian.

Theorem (Jørgensen)

 $G:=\langle f,g
angle < PSL(2,\mathbb{C})$ is a non-elementary Kleinian group. Then,

$$J(f,g) := |tr^{2}(f) - 4| + |tr(fgf^{-1}g^{-1}) - 2| \ge 1$$

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

イロン イヨン イヨン イヨン

Jørgensen number

Definition

 $G < PSL(2, \mathbb{C})$: a non-elementary 2-generator group.

$$J(G) := \inf \{ J(f,g) \mid G = \langle f,g \rangle \}$$

is called the Jørgensen number of G.

• Now we consider the following problem :

Problem

r : a real number with $r \ge 1$. When is there a non-elementary Kleinian group whose Jørgensen number is equal to r?

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

イロン イヨン イヨン イヨン

Jørgensen number

Definition

 $G < PSL(2, \mathbb{C})$: a non-elementary 2-generator group.

$$J(G) := \inf \{ J(f,g) \mid G = \langle f,g \rangle \}$$

is called the Jørgensen number of G.

• Now we consider the following problem :

Problem

r : a real number with $r \ge 1$. When is there a non-elementary Kleinian group whose Jørgensen number is equal to r?

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

イロト イヨト イヨト イヨト

æ

Jørgensen number

Definition

 $G < PSL(2, \mathbb{C})$: a non-elementary 2-generator group.

$$J(G) := \inf \{ J(f,g) \mid G = \langle f,g \rangle \}$$

is called the Jørgensen number of G.

• Now we consider the following problem :

Problem

r: a real number with $r \ge 1$. When is there a non-elementary Kleinian group whose Jørgensen number is equal to r?

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

・ロッ ・回 ・ ・ ヨッ ・

Oichi-Sato's theorems

• Oichi and Sato show that :

Theorem (Oichi-Sato)

r : a positive integer.

Then, there is a non-elementary Kleinian group G s.t. J(G) = r.

Theorem (Oichi-Sato)

r : a real number with r > 4. Then, there is a classical Schottky group G, s.t. J(G) = r.

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Oichi-Sato's theorems

• Oichi and Sato show that :

Theorem (Oichi-Sato)

r : a positive integer.

Then, there is a non-elementary Kleinian group G s.t. J(G) = r.

Theorem (Oichi-Sato)

r : a real number with r> 4. Then, there is a classical Schottky group $G, \; s.t. \; J(G)=r$.

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

イロン イヨン イヨン イヨン

Oichi-Sato's theorems

• Oichi and Sato show that :

Theorem (Oichi-Sato)

r: a positive integer.

Then, there is a non-elementary Kleinian group G s.t. J(G) = r.

Theorem (Oichi-Sato)

r : a real number with r > 4. Then, there is a classical Schottky group *G*, *s.t.* J(G) = r.

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Problems

From these theorems, we have the following problems:

Problem (Oichi-Sato)

 $r \in (1,4)$: a non-integer. When is there a non-elementary Kleinian group whose Jørgensen number is equal to r?

Problem

r: a real number with r > 4.

Is there a non-elementary Kleinian group other than the already known groups whose Jørgensen number is equal to *r*?

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Problems

From these theorems, we have the following problems:

Problem (Oichi-Sato)

 $r \in (1, 4)$: a non-integer. When is there a non-elementary Kleinian group whose Jørgensen number is equal to r?

Problem

r : a real number with r > 4.

Is there a non-elementary Kleinian group other than the already known groups whose Jørgensen number is equal to *r*?

Motivation Classification of elementary Kleinian groups Oichi-Sato's problem

イロト イヨト イヨト イヨト

Problems

From these theorems, we have the following problems:

Problem (Oichi-Sato)

 $r \in (1, 4)$: a non-integer. When is there a non-elementary Kleinian group whose Jørgensen number is equal to r?

Problem

r: a real number with r > 4.

Is there a non-elementary Kleinian group other than the already known groups whose Jørgensen number is equal to r?

イロト イヨト イヨト イヨト

The Riley slice

- We will consider the one-parameter family of non-elementary Kleinian groups generated by two parabolic transformations X, Y_{ρ} .
- We normalize so that $\operatorname{Fix}(X) = \{0\}, \operatorname{Fix}(Y_{\rho}) = \{\infty\}$:

$$X = egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}, \ Y = egin{pmatrix} 1 & 0 \
ho & 1 \end{pmatrix} (
ho \in \mathbb{C}) \,.$$

•
$$G_{\rho} := \langle X, Y_{\rho} \rangle.$$

Definition

The *Riley slice* is defined by

イロト イヨト イヨト イヨト

The Riley slice

- We will consider the one-parameter family of non-elementary Kleinian groups generated by two parabolic transformations X, Y_{ρ} .
- We normalize so that $\operatorname{Fix}(X) = \{0\}, \operatorname{Fix}(Y_{\rho}) = \{\infty\}$:

$$X=egin{pmatrix} 1&1\0&1 \end{pmatrix}, \ Y=egin{pmatrix} 1&0\
ho&1 \end{pmatrix}(
ho\in\mathbb{C})\,.$$

•
$$G_{\rho} := \langle X, Y_{\rho} \rangle.$$

Definition

The *Riley slice* is defined by

イロト イヨト イヨト イヨト

The Riley slice

- We will consider the one-parameter family of non-elementary Kleinian groups generated by two parabolic transformations X, Y_{ρ} .
- We normalize so that $\operatorname{Fix}(X) = \{0\}, \operatorname{Fix}(Y_{\rho}) = \{\infty\}$:

$$X=egin{pmatrix} 1&1\0&1 \end{pmatrix}, \ Y=egin{pmatrix} 1&0\
ho&1 \end{pmatrix} (
ho\in\mathbb{C})\,.$$

•
$$G_{\rho} := \langle X, Y_{\rho} \rangle.$$

Definition

The Riley slice is defined by

イロト イヨト イヨト イヨト

The Riley slice

- We will consider the one-parameter family of non-elementary Kleinian groups generated by two parabolic transformations X, Y_{ρ} .
- We normalize so that $\operatorname{Fix}(X) = \{0\}, \operatorname{Fix}(Y_{\rho}) = \{\infty\}$:

$$X=egin{pmatrix} 1&1\0&1 \end{pmatrix}, \ Y=egin{pmatrix} 1&0\
ho&1 \end{pmatrix}(
ho\in\mathbb{C})\,.$$

•
$$G_{\rho} := \langle X, Y_{\rho} \rangle.$$

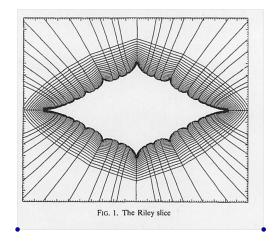
Definition

The Riley slice is defined by

・ロン ・回と ・ヨン ・ヨン

3

• From L.Keen, C.Series, The Riley slice of the Schottky spaces



イロン イヨン イヨン イヨン

A characterization of Riley slice

Theorem (Maskit-Swarup)

A Kleinian group of 2nd kind generated by two parabolic transformations is geometrically finite.

Theorem (Maskit)

G : a geometrically finite two-generator free Kleinian group with a parabolic transformation.

Then, G is a "point" of the boundary of Schottky space of rank 2.

Corollary

Every $ho\in\mathcal{R},\;\mathcal{G}_{
ho}$ is a point of the boundary of Schottky space of rank 2.

・ロン ・回と ・ヨン・

A characterization of Riley slice

Theorem (Maskit-Swarup)

A Kleinian group of 2nd kind generated by two parabolic transformations is geometrically finite.

Theorem (Maskit)

G: a geometrically finite two-generator free Kleinian group with a parabolic transformation.

Then, G is a "point" of the boundary of Schottky space of rank 2.

Corollary

Every $ho \in \mathcal{R}$, $\mathcal{G}_{
ho}$ is a point of the boundary of Schottky space of rank 2.

A characterization of Riley slice

Theorem (Maskit-Swarup)

A Kleinian group of 2nd kind generated by two parabolic transformations is geometrically finite.

Theorem (Maskit)

G: a geometrically finite two-generator free Kleinian group with a parabolic transformation.

Then, G is a "point" of the boundary of Schottky space of rank 2.

Corollary

Every $\rho \in \mathcal{R}$, G_{ρ} is a point of the boundary of Schottky space of rank 2.

The Riley slice of Schottky space An extensition of Oichi-Sato's theorem

Jørgensen number on the Riley slice

Proposition

 $\forall \rho \in \mathcal{R}, \ J(\mathcal{G}_{\rho}) = |\rho|^2$

For the Riley slice, Keen and Series show that :

Theorem (Keen-Series)

If $\rho_0 \in \mathcal{R}, \ r > |\rho_0|$, then there is $\rho \in \mathcal{R}$ s.t. $|\rho| = r$.

The Riley slice of Schottky space An extensition of Oichi-Sato's theorem

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Jørgensen number on the Riley slice

Proposition

 $\forall
ho \in \mathcal{R}, \ J(\mathcal{G}_{
ho}) = |
ho|^2$

For the Riley slice, Keen and Series show that :

```
Theorem (Keen-Series)
```

If $\rho_0 \in \mathcal{R}, \ r > |\rho_0|$, then there is $\rho \in \mathcal{R}$ s.t. $|\rho| = r$.

The Riley slice of Schottky space An extensition of Oichi-Sato's theorem

・ロン ・回と ・ヨン ・ヨン

Jørgensen number on the Riley slice

Proposition

 $\forall \rho \in \mathcal{R}, \ J(\mathcal{G}_{\rho}) = |\rho|^2$

For the Riley slice, Keen and Series show that :

Theorem (Keen-Series)

If $\rho_0 \in \mathcal{R}$, $r > |\rho_0|$, then there is $\rho \in \mathcal{R}$ s.t. $|\rho| = r$.

The Riley slice of Schottky space An extensition of Oichi-Sato's theorem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

An extensition of Oichi-Sato's theorem

We obtain the following theorem :

Theorem (Y) $\forall r \geq \frac{5}{2}, \exists \rho \in \mathcal{R} \text{ s.t. } J(G_{\rho}) = r.$ In particular, $\forall r \geq \frac{5}{2}, \text{ there is a group on the boundary of the Schottky space rank 2 s.t.}$ J(G) = r.

The Riley slice of Schottky space An extensition of Oichi-Sato's theorem

An extensition of Oichi-Sato's theorem

We obtain the following theorem :

Theorem (Y) $\forall r \geq \frac{5}{2}, \exists \rho \in \mathcal{R} \text{ s.t. } J(G_{\rho}) = r.$ In particular, $\forall r \geq \frac{5}{2}$, there is a group on the boundary of the Schottky space rank 2 s.t. J(G) = r.

Kissing Schottky group Jørgensen numbers of once punctured torus groups

イロン 不同と 不同と 不同と

Kissing Schottky group

Definition

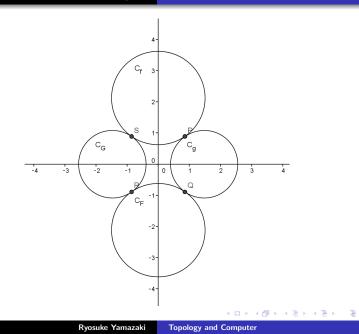
 $\begin{array}{l} f, \ g: \ \text{loxodromic transformations,} \\ \{C_f^+, C_f^-\}, \ \{C_g^+, C_g^-\}: \ \text{circle pairings corresponding to } f, \ g. \\ G = \langle f, \ g \rangle \ \text{is a kissing Schottky group.} \\ \stackrel{\text{def}}{\Longrightarrow} \end{array}$

• G is a free group.

•
$$C_f^+ \cap C_g^+ = \{P\}, \ C_g^+ \cap C_f^- = \{Q\}, \ C_f^- \cap C_g^- = \{R\}, \ C_g^- \cap C_f^+ = \{S\}$$
 (one points).

Kissing Schottky group

Jørgensen numbers of once punctured torus groups



Kissing Schottky group Jørgensen numbers of once punctured torus groups

< □ > < @ > < 注 > < 注 > ... 注

Once punctured torus group

Lemma

A kissing Schottky group is a "point" on the boundary of the Schottky space.

Theorem (cf. [Indra's pearls])

 $G = \langle f, g \rangle$: K.S.group. G is a once punctured torus group.

$\Longleftrightarrow f(Q) = P, \ f(R) = S, \ g(R) = Q, \ g(S) = P.$

Kissing Schottky group Jørgensen numbers of once punctured torus groups

・ロン ・回 と ・ 回 と ・ 回 と

Once punctured torus group

Lemma

A kissing Schottky group is a "point" on the boundary of the Schottky space.

Theorem (cf. [Indra's pearls]) $G = \langle f, g \rangle$: K.S.group.

G is a once punctured torus group.

 $\iff f(Q) = P, \ f(R) = S, \ g(R) = Q, \ g(S) = P.$

Kissing Schottky group Jørgensen numbers of once punctured torus groups

イロン イロン イヨン イヨン 三日

Jørgensen numbers of once punctured torus groups

Corollary (Y) $G = \langle f, g \rangle$: once punctured torus group. Then J(G) > 4.

Ryosuke Yamazaki Topology and Computer

Kissing Schottky group Jørgensen numbers of once punctured torus groups

・ロト ・日本 ・ヨト ・ヨト

Future problems

Problem

r > 4: a real number. When is there a K.S. once punctured torus group whose Jørgensen number is equal to r?

Problem

What is happened when Jørgensen number is equal to 4?

Kissing Schottky group Jørgensen numbers of once punctured torus groups

イロト イポト イヨト イヨト

Future problems

Problem

r > 4: a real number. When is there a K.S. once punctured torus group whose Jørgensen number is equal to r?

Problem

What is happened when Jørgensen number is equal to 4?

Kissing Schottky group Jørgensen numbers of once punctured torus groups

イロト イヨト イヨト イヨト

æ

Thank you for your attention!