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Motivation
Classification of elementary Kleinian groups
Oichi-Sato’s problem

Motivation

A Kleinian group is a discrete subgroup of Isom+(Hn).

Isom+(H3) ∼= PSL (2,C) (by the Poincaré extention)

Σ : a complete hyperbolic 3-manifold.

ρ : π1 (Σ) −→ PSL (2,C)

ρ is faithful =⇒ ρ (π1 (Σ)) is a torsion-free Kleinian group.

Conversely, if G is a torsion-free Kleinian group, H3/G is a complete
hyperbolic 3-manifold.

We want to classify Kleinian groups in order to classify hyperbolic
manifolds.
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Elementary groups

Definition

A group G < PSL (2,C) is elementary.
def⇐⇒ There is a finite G -orbit in H3.

Lemma

G < PSL (2,C) : a Kleinian group.

G is elementary.
⇔ The limit set Λ (G ) consists of 0, 1, or 2 points.

G is non-elementary.
⇔ The limit set Λ (G ) is an infinite set.
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Classification theorem of elementary Kleinian groups

Theorem

A torsion-free elementary Kleinian group is conjugate to one of the
following:

(1) A parabolic cyclic group:

⟨(
1 1
0 1

)⟩
(2) A parabolic abelian group rank 2:

⟨(
1 1
0 1

)
,

(
1 α
0 1

)⟩
(ℑα > 0)

(3) A loxodromic cyclic group:

⟨(
λ 0
0 λ−1

)⟩
(|λ| ≠ 0, 1)
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Jørgensen’s theorems

When is a non-elementary group discrete (i.e, a Kleinian group)?

Theorem (Jørgensen)

G < PSL (2,C) : non-elementary group.
G is a Kleinian. ⇔ ∀f , g ∈ G , ⟨ f , g ⟩ is a Kleinian.

Theorem (Jørgensen)

G := ⟨f , g⟩ < PSL (2,C) is a non-elementary Kleinian group.
Then,

J (f , g) := |tr2 (f )− 4|+ |tr
(
fgf −1g−1

)
− 2| ≥ 1
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Jørgensen number

Definition

G < PSL (2,C) : a non-elementary 2-generator group.

J(G ) := inf{J (f , g) | G = ⟨f , g⟩}

is called the Jørgensen number of G .

Now we consider the following problem :

Problem

r : a real number with r ≥ 1.
When is there a non-elementary Kleinian group whose Jørgensen number
is equal to r?
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Oichi-Sato’s theorems

Oichi and Sato show that :

Theorem (Oichi-Sato)

r : a positive integer.
Then, there is a non-elementary Kleinian group G s.t. J(G ) = r .

Theorem (Oichi-Sato)

r : a real number with r > 4.
Then, there is a classical Schottky group G , s.t. J(G ) = r .
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Problems

From these theorems, we have the following problems:

Problem (Oichi-Sato)

r ∈ (1, 4) : a non-integer.
When is there a non-elementary Kleinian group whose Jørgensen number
is equal to r?

Problem

r : a real number with r > 4.
Is there a non-elementary Kleinian group other than the already known
groups whose Jørgensen number is equal to r?
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The Riley slice of Schottky space
An extensition of Oichi-Sato’s theorem

The Riley slice

We will consider the one-parameter family of non-elementary Kleinian
groups generated by two parabolic transformations X , Yρ.

We normalize so that Fix (X ) = {0},Fix (Yρ) = {∞} :

X =

(
1 1
0 1

)
, Y =

(
1 0
ρ 1

)
(ρ ∈ C) .

Gρ := ⟨X , Yρ⟩.

Definition

The Riley slice is defined by

R := {ρ ∈ C | Gρ is free and Ω(Gρ) /Gρ is 4-times punctured sphere}.
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From L.Keen, C.Series, The Riley slice of the Schottky spaces
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The Riley slice of Schottky space
An extensition of Oichi-Sato’s theorem

A characterization of Riley slice

Theorem (Maskit-Swarup)

A Kleinian group of 2nd kind generated by two parabolic transformations
is geometrically finite.

Theorem (Maskit)

G : a geometrically finite two-generator free Kleinian group with a
parabolic transformation.
Then, G is a “point” of the boundary of Schottky space of rank 2.

Corollary

Every ρ ∈ R, Gρ is a point of the boundary of Schottky space of rank 2.
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Jørgensen number on the Riley slice

Proposition

∀ρ ∈ R, J(Gρ) = |ρ|2

For the Riley slice, Keen and Series show that :

Theorem (Keen-Series)

If ρ0 ∈ R, r > |ρ0|, then there is ρ ∈ R s.t. |ρ| = r .
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An extensition of Oichi-Sato’s theorem

We obtain the following theorem :

Theorem (Y)

∀r ≥ 5
2 , ∃ρ ∈ R s.t. J(Gρ) = r .

In particular,
∀r ≥ 5

2 , there is a group on the boundary of the Schottky space rank 2 s.t.
J(G ) = r .
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Kissing Schottky group

Definition

f , g : loxodromic transformations,
{C+

f ,C−
f }, {C+

g ,C−
g } : circle pairings corresponding to f , g .

G = ⟨f , g⟩ is a kissing Schottky group.
def⇐⇒

G is a free group.

C+
f ∩ C+

g = {P}, C+
g ∩ C−

f = {Q}, C−
f ∩ C−

g = {R},
C−
g ∩ C+

f = {S} (one points).
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Once punctured torus group

Lemma

A kissing Schottky group is a “point” on the boundary of the Schottky
space.

Theorem (cf. [Indra’s pearls])

G = ⟨f , g⟩ : K.S.group.
G is a once punctured torus group.

⇐⇒ f (Q) = P , f (R) = S , g(R) = Q, g(S) = P .
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Jørgensen numbers of once punctured torus groups

Corollary (Y)

G = ⟨f , g⟩ : once punctured torus group.
Then J (G ) > 4.
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Future problems

Problem

r > 4 : a real number.
When is there a K.S. once punctured torus group whose Jørgensen number
is equal to r?

Problem

What is happened when Jørgensen number is equal to 4?
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Thank you for your attention!

Ryosuke Yamazaki Topology and Computer


	Introduction
	Motivation
	Classification of elementary Kleinian groups
	Oichi-Sato's problem

	Jgensen numbers on the Riley slice
	The Riley slice of Schottky space
	An extensition of Oichi-Sato's theorem

	Once punctured torus group
	Kissing Schottky group
	Jgensen numbers of once punctured torus groups


